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Abstract—The use of container technology has skyrocketed
during the last few years, with Docker as the leading
container platform. Docker’s online repository for publicly
available container images, called Docker Hub, hosts over
3.5 million images at the time of writing, making it the
world’s largest community of container images. We perform
an extensive vulnerability analysis of 2500 Docker images.
It is of particular interest to perform this type of analysis
because the vulnerability landscape is a rapidly changing
category, the vulnerability scanners are constantly developed
and updated, new vulnerabilities are discovered, and the
volume of images on Docker Hub is increasing every day.
Our main findings reveal that (1) the number of newly
introduced vulnerabilities on Docker Hub is rapidly increas-
ing; (2) certified images are the most vulnerable; (3) official
images are the least vulnerable; (4) there is no correlation
between the number of vulnerabilities and image features
(i.e., number of pulls, number of stars, and days since the
last update); (5) the most severe vulnerabilities originate
from two of the most popular scripting languages, JavaScript
and Python; and (6) Python 2.x packages and jackson-
databind packages contain the highest number of severe
vulnerabilities. We perceive our study as the most extensive
vulnerability analysis published in the open literature in the
last couple of years.

Index Terms—Container technology, Docker, Virtual Ma-
chines, Vulnerabilities

1. Introduction

Container technology has been known for a long
time in Linux systems through Linux Containers (LXC),
but it was not commonly used until a decade ago. The
introduction of Docker in [I] made the popularity of
containerization rise exponentially. Container technology
has revolutionized how software is developed and is seen
as a paradigm shift. More concretely, containerization
is considered as a beneficial technique for Continuous
Integration/Continuous Delivery (CI/CD) pipelines; it is
providing an effective way of organizing microservices; it
is making it easy to move an application between different
environments; and in general, it is simplifying the whole
system development life cycle.

Software containers got its name from the shipping
industry since the concepts are fundamentally the same. A
software container is code wrapped up with all its depen-
dencies so that the code can run reliably and seamlessly in
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any computer environment isolated from other processes.
Hence, containers are convenient, lightweight, and fast
technology to achieve isolation, portability, and scalability.

Container technology is replacing virtual machines
continuously, and the trend is that more companies are
choosing to containerize their applications. Gartner pre-
dicts that more than 70% of global companies will have
more than two containerized applications in production
by 2023. This is an increase from less than 20% in
2019." With the advent of 5G communication technology,
it seems that container technology and particularly Docker
is finding new venue for application in the domain of
network slicing, network management, orchestration and
in 5G testbeds [2].

Docker provides a popular registry service for the shar-
ing of Docker images, called Docker Hub.? It currently
hosts over 3.5 million container images, and the number
keeps growing. Images could be uploaded and maintained
by anyone, which creates an innovative environment for
anyone to contribute and participate. However, on the
downside, this makes it hard for Docker to ensure that
packages and applications are up to date to avoid outdated
and vulnerable software.

When looking at the security of Docker, two aspects
need to be considered: the security of the Docker software
at the host, and the security of the Docker containers.
Docker Inc. claims that “Docker containers are, by de-
fault, quite secure; especially if you run your processes as
non-privileged users inside the container.” [3]. However,
it is a simple fact that Docker (the Docker daemon and
container processes) runs with root privileges by default,
which exposes a huge attack surface [4]. A single vul-
nerable container is enough for an adversary to achieve
privilege escalation. Hence, the security of the whole
Docker ecosystem is highly related to the vulnerability
landscape in Docker images.

Related work. One of the first to explore the vulner-
ability landscape of Docker Hub was BanyanOps [5].
In 2015, they published a technical report revealing that
36% of official images on Docker Hub contained high
priority vulnerabilities [5]. Further, they discovered that
this number increases to 40% when community images
(or general images as they call it in the report) are an-
alyzed. BanyanOps built their own vulnerability scanner

1. Gartner: 3 Critical Mistakes That 1&0O Leaders Must Avoid With
Containers
2. Docker Hub webpage: https://hub.docker.com/
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based on Common Vulnerabilities and Exposures (CVE)-
scores, and analyzed all official images (=75 repositories
with ~960 unique images) and some randomly chosen
community images. However, at that time, Docker Hub
consisted of just ~95,000 images.

In 2017, Shu et al. conducted a new vulnerability
analysis of Docker Hub images [0]. With the aim of re-
vealing the Docker Hub vulnerability landscape, they cre-
ated their own analysis framework called DIVA (Docker
image vulnerability analysis). The DIVA framework dis-
covers, downloads, and analyses official and community
images. It is based on the Clair scanner and uses random
search strings to discover images on Docker Hub. The
analysis revealed that, on average, an image (official and
community) contains more than 180 vulnerabilities. They
also found that many images had not been updated for
hundreds of days, which is problematic from a security
point of view. Further, it was observed that vulnerabilities
propagate from parent to child images.

To our knowledge, the most recent vulnerability anal-
ysis of Docker Hub images was performed during spring
2019 by Socchi and Luu [7]. They investigated whether
the security measures introduced by Docker Inc. (more
precisely, the introduction of verified and certified image
types) improved the security of Docker Hub. In addition,
they inspected the distribution of vulnerabilities across
repository types and whether vulnerabilities still are inher-
ited from parent to child image. They implemented their
own analyzing software using the Clair scanner, and used
the results from Shu et al. [6] from 2017 as a comparison.
The data set they successfully analyzed consisted of 757
images in total. Of these, 128 were official, 500 were
community, 98 were verified, and 31 were certified. They
only analyzed the most recent images in each repository
and skipped all Microsoft repositories. Their conclusion
was that the security measures introduced by Docker Inc.
do not improve the overall Docker Hub security. They
stated that the number of inherited vulnerabilities had
dropped since the analysis of Shu et al. However, they
also found that the average number of new vulnerabili-
ties in child images had increased significantly. Further,
they found that the majority of official, community, and
certified repositories contain up to 75 vulnerabilities and
that the majority of verified images contain up to 180
vulnerabilities.

Our contribution. This is an extended summary of our
longer and much more detailed work [8]. We scrutinized
the vulnerability landscape in Docker Hub images at the
beginning of 2020 within the following framework:

e Images on Docker Hub belong in one of the following
four types: "official", "verified", "certified", or "commu-
nity";

e We used a quantitative mapping of the Common Vulner-
ability Scoring System (CVSS) [9] (which is a numerical
score indicating the severity of the vulnerability in a scale
from 0.0 to 10.0) into five qualitative severity rating levels:
"critical”, "high", "medium", "low", or "none" plus one
additional level "unknown".

For performing the analysis of a significant number
of images, we used an open-source vulnerability scanner
tool and developed our own scripts and tools. All our
developed scripts and tools are available from [8] and from

Tmage type 2015 [5] 2017 [6] 2019 [7] 2020
vuln | avg || vuln|avg || vuln|avg || vuln|avg
Official 36% -|| 80% 75 -] 170] 46%| 70|
Community 40%) -|| 80% 180 -| 150/ 68% 150{
Verified - i i f - 150/ 57% 90[
Certified - g . g - 30| 82% 9q

TABLE 1: A summary comparison table of results re-
ported in 2015 [5], in 2017 [6] in 2019 [7] and in our work
(2020). The sub-columns "vuln" contain the percentage
of images with at least one high rated vulnerability and
the "avg" sub-columns contain the average number of
vulnerabilities found in each image type.

the GitHub repository °.

Our findings can be summarized as follows: 1. The
median value (when omitting the negligible and unknown
vulnerabilities) is 26 vulnerabilities per image. 2. Most
of the vulnerabilities were found in the medium severity
category. 3. Around 17.8% (430 images) do not contain
any vulnerabilities, and if we are considering negligi-
ble and unknown vulnerabilities as no vulnerability, the
number increase to as many as 21.6% (523 images). 4.
As intuitively expected, when considering the average,
community images are the most exposed. We found that 8
out of the top 10 most vulnerable images are community
images. 5. However, to our surprise, the certified images
are the most vulnerable when considering the median
value. They had the most high rated vulnerabilities as
well as the most vulnerabilities rated as low. As many as
82% of certified images contain at least either one high or
critical vulnerability. 6. Official images come out as the
most secure image type. Around 45.9% of them contain
at least one critical or high rated vulnerability. 7. The
median value of the number of critical vulnerabilities in
images is almost identical for all four image types. 8.
Verified and official images are the most updated, and
community and certified images are the least updated.
Approximately 30% of images have not been updated
for the last 400 days. 9. There is no correlation between
the number of vulnerabilities and the evaluated image
features (i.e., the number of pulls, the number of stars,
and the last update time). However, the images with
many vulnerabilities generally have few pulls and stars.
10. Vulnerabilities in the Lodash library and vulnera-
bilities in Python packages are the most frequent and
most severe. The top five most severe vulnerabilities are
coming from two of the most popular scripting languages,
JavaScript and Python. 11. Vulnerabilities related to ex-
ecution of code and overflow are the most frequently
found critical vulnerabilities. 12. The most vulnerable
package is the jackson-databind-2.4.0 package,
with overwhelming 710 critical vulnerabilities, followed
by Python-2.7.5 with 520 critical vulnerabilities.

Last but not least, when put in comparison with the
three previous similar studies [5]-[7], our results are sum-
marized in Table 1. Note that some of the cells are empty
due to differences in methodologies and types of images
when the studies were performed.

3. https://github.com/katrinewi/Docker-image- analyzing-tools
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Repository type | Quantity
Official 160
Verified 250
Certified 51
Community 3,064,454
Total 3,064,915

TABLE 2: Repository type distribution on Docker Hub
(February 3rd, 2020

2. Preliminaries

Virtualization is the technique of creating a virtual
abstraction of some resources to make multiple instances
run isolated from each other on the same hardware [10].
There are different approaches to achieve virtualization.
One approach is using Virtual Machines (VMs). A VM is
a virtualization of the hardware at the host. Hence, each
VM has its own kernel, and in order to manage the dif-
ferent VMs, a software called hypervisor is required. The
hypervisor emulates the Central Processing Unit (CPU),
storage, and Random-Access Memory (RAM), among
others, for each virtual machine. This allows multiple
virtual machines to run as separate machines on a single
physical machine.

In contrast to VMs, containers virtualize the Operat-
ing System (OS) level. Every container running on the
same machine shares the same underlying kernel, where
only bins, libraries, and other run time components are
executed exclusively for a single container. In short, a
container is a standardized unit of software that contains
all code and dependencies [!1]. Thus, containers require
less memory and achieve a higher level of portability than
VMs. Container technology has simplified the software
development process as the code is portable, and hence
what is run in the development department will be the
same as what is run in the production department [I2].

On the Docker Hub, image repositories are divided
into different categories. Repositories are either private
or public and could further be either official, community
or a verified repository. In addition, repositories could be
certified, which is a subsection of the verified category.
The official repositories are maintained and vetted by
Docker. Docker vets the verified ones that are developed
by third-party developers. Besides being verified, certified
images are also fulfilling some other requirements related
to quality, support, and best practices [13]. Community
images could be uploaded and maintained by anyone.
The distribution of the image repository types on Docker
Hub can be seen in Table 2. The community repository
category is by far the most dominant one and makes up
to ~99% of all Docker Hub repositories.

2.1. Vulnerability databases and categorization
method

The severity of vulnerabilities depends on a variety of
different variables, and it is highly complex to compare
them due to the diversity of different technologies and
solutions. Already in 1997, the National Vulnerability
Database (NVD) started working on a database that would
contain publicly known software vulnerabilities to pro-
vide a means of understanding future trends and current

patterns [14]. The database can be useful in the field of
security management when deciding what software is safe
to use and for predicting whether or not software contains
vulnerabilities that have not yet been discovered.

Common Vulnerabilities and Exposures (CVE). Na-
tional Vulnerability Database (NVD) contains Common
Vulnerabilities and Exposures (CVE) entries and pro-
vides details about each vulnerability like vulnerability
overview, Common Vulnerability Scoring System (CVSS),
references, Common Platform Enumeration (CPE) and
Common Weakness Enumeration (CWE) [15].

CVE is widely used as a method for referencing
security vulnerabilities that are publicly known in released
software packages. At the time of writing, there were
130,094 entries in the CVE list.* The CVE list was
created by MITRE Corporation® in 1999, whose role is
to manage and maintain the list. They work as a neutral
and unbiased part in order to serve in the interest of
the public. Examples of vulnerabilities found in CVE are
frequent errors, faults, flaws, and loopholes that can be
exploited by a malicious user in order to get unauthorized
access to a system or server. The loopholes can also be
used as propagation channels for viruses and worms that
contain malicious software [16]. Over the years, CVE has
become a recognized building block for various vulnera-
bility analysis and security information exchange systems,
much because it is continuously maintained and updated,
and because the information is stored with accurate enu-
meration and orderly naming.
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Figure 1: Common Vulnerability Scoring System structure

(9]

Common Vulnerability Scoring System (CVSS). The
Common Vulnerability Scoring System (CVSS) score is a
numerical score indicating the severity of the vulnerability
on a scale from zero to 10, based on a variety of metrics.
The metrics are divided into three metric groups: Base
Metric Group, Temporal Metric Group, and Environmen-
tal Metric group. A Base Score is calculated by the metrics
in the Base Metric Group, and is independent of the user
environment and does not change over time. The Temporal
Metrics take in the base score and adjusts it according to
factors that do change over time, such as the availability of
exploit code [9]. Environmental Metrics adjust the score

4. The number of entries in the CVE list was retrieved 28. Jan 2020
from the official website: https://cve.mitre.org

5. MITRE Corporation is a non-profit US organization with the vision
to resolve problems for a safer world: https://www.mitre.org



Rating | CVSS Score
None 0.0
Low 0.1 -39
Medium 4.0-69
High 7.0 - 8.9
Critical 9.0 - 10.0

TABLE 3: CVSS Severity scores

yet again, based on the type of computing environment.
This allows organizations to adjust the score related to
their IT assets, taking into account existing mitigations
and security measures that are already in place in the
organization.

In our analysis, it would not make sense to take into
account the Temporal or Environmental Metrics as we
wanted to discuss the vulnerability landscape indepen-
dently of the exact time and environment. Therefore, only
the Base Metric group will be described in more detail.
It is composed of two sets of metrics: the Exploitability
metrics and the Impact metrics, as can be seen in Figure
1 [9]. The first set takes into account how the vulnerable
component can be exploited and includes attack vector
and complexity, what privileges are required to perform
the attack, and whether or no user interaction is required.
The latter set reflects on the consequence of a successful
exploit and what impact it has on the confidentiality,
integrity, and availability of the system. The last metric is
scope, which considers if the vulnerability can propagate
outside the current security scope.

When the Base Score of a vulnerability is calculated,
the eight different metrics from Figure | are being con-
sidered. Each metric is assigned one out of two to four
different values, which is used to generate a vector string.
The vector string is then used to calculate the Common
Vulnerability Scoring System (CVSS) score, which is a
numerical value between 0 and 10. In many cases, it is
more beneficial to have a textual value than a numerical
value. The CVSS score can be mapped to qualitative
ratings where the severity is categorized as either critical,
high, medium, low, or none, as can be seen in Table 3 [9].

3. Docker Hub vulnerability landscape

3.1. The distribution of vulnerabilities in each
severity category

To determine what the current vulnerability landscape
is like in Docker Hub, the number of vulnerabilities found
in each severity category is presented in figure 2. As it is
interesting to see how many vulnerabilities that are found
in total (figure 2a) and how many unique vulnerabilities
(figure 2b) there are, both these results are presented in
this section.

In figure 2a, the results are based on vulnerability
scanning of the complete data set, meaning that this
result is based on all found vulnerabilities. The same
vulnerability could potentially have multiple entries in the
result. This is because a particular vulnerability could be
found in multiple images and a single image could contain
the same vulnerability in multiple packages. In figure 2b,
only unique vulnerabilities are shown. However, some
vulnerabilities are present in several severity categories,

depending on which image it is found in. In cases like
this, all versions of the vulnerability is included, which
makes up a total of 14,031 vulnerabilities.

In figure 2a, the negligible and unknown categories
clearly stands out, with a total of 315,102 and 240,132 vul-
nerabilities, respectively. When considering unique vul-
nerabilities (figure 2b), the medium category is the most
dominant one with 5,554 unique vulnerabilities. When
examining the relation between figure 2a and 2b, one
can observe the ratio of vulnerabilities between severity
categories. It becomes clear that the negligible category
contains a few number of unique vulnerabilities repre-
sented in many Docker images. Whereas the medium
category has many unique vulnerabilities represented at
a lower ratio. The vulnerability ratio will be explained in
detail in the next paragraph.

Severity N umb.ef of Number .qf . unique Ratio
vulnerabilities (A) vulnerabilities (B) (A/B)

Critical 10,378 206 50
High 44,058 1,313 34
Medium 171,832 5,554 31
Low 137,290 2,326 59
Negligible 315,102 959 329
Unknown 240,132 3,674 65
Total 918,792 14,031 66

TABLE 4: Vulnerability frequency in severity levels

Table 4 shows the total number of vulnerabilities, the
number of unique vulnerabilities, and the ratio, measured
as the total number of vulnerabilities divided by the
number of unique vulnerabilities. So, for each unique
vulnerability, there are a certain number of occurrences
of the specific vulnerability in the data set. For example,
for each unique vulnerability in the critical category, there
are 50 occurrences of this vulnerability in the data set on
average. For each unique negligible vulnerability, there
are as many as 329 occurrences on average. This is
significantly larger than the other values. Despite medium
having the highest number of unique vulnerabilities, it has
the lowest ratio.

3.2. Central tendency of the vulnerability distri-
bution

We have looked at the average and median values of
the number of vulnerabilities in images when disregarding
the vulnerabilities that are categorized as negligible and
unknown. Looking at Table 4 from the previous section,
one can see that negligible and unknown vulnerabilities
together make up 555,234 out of the 918,792 vulner-
abilities (around 60%). As vulnerabilities in these two
categories are considered to contribute with little threat
when investigating the current vulnerability landscape, it
gives a more accurate result to exclude these. Therefore,
we calculated the average and median number of vul-
nerabilities in images when disregarding negligible and
unknown vulnerabilities (counting them as zero). The
result was 151 for the average and 26 for the median.

To investigate the data when disregarding the negligi-
ble and unknown vulnerabilities further, we created Table
5 that shows statistical values of number of vulnerabilities
for each image type. The results show that community
images have the highest average and maximum values
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Number Number
of of .
Image type analyzed vulnera- Average| Median | Max
images bilities
Verified 60 6,073 101.2 13 | 1,128
Certified 22 1,987 90.3 37 428
Official 157 11,489 73.2 9 1,615
Community 2,173 344,009 158.3 28 | 6,509

TABLE 5: Statistical values for vulnerabilities per image
type, disregarding negligible and unknown vulnerabilities.

(158, and 6,509, respectively). The maximum value for
community images is significantly larger than the average
and the median, which is the case for the other three
image types as well. The image type that is considered as
the least vulnerable is official. It has the lowest average
of 73 and the lowest median value of 9. Further, the
maximum value for official images is the second lowest.
The lowest maximum value belongs to certified, and is
only 428. Although certified has the lowest maximum
value, it has the highest median value. This indicates that
a larger portion of the images have many vulnerabilities.
As a final note, all four image types contain at least one
image with zero vulnerabilities.

3.3. Vulnerabilities in each image type

Since the median describes the central tendency better
than the average when the data is skewed here we will
work with the median values (given in Figure 3). Note
that only critical, high, medium and low vulnerabilities
are included in the figure. The negligible and unknown
vulnerabilities are not included here because they do not
usually pose as significant threats, and therefore do not
contribute with additional information when investigating
the current vulnerability landscape.

The results show that the median of critical vulnera-
bilities is almost the same for all four image types (4.0
and 3.0). The other severity categories are more varied
across the image types. The high severity category is the
most represented in certified images, while the medium
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Figure 3: Median values of vulnerabilities for each sever-
ity category and image type

category is the most represented in the community images.
For verified, official and community images, the medium
severity has the highest median, while the certified images
has the most low vulnerabilities. Overall, it is the certified
images that are the most vulnerable.

3.4. Images that contain the most critical vulner-
abilities

Out of all 2,412 successfully analyzed images, this
section will present the most vulnerable ones. Table 6
displays the most vulnerable images based on the number
of critical vulnerabilities in each image. In cases where
the critical count is the same, the image with the highest
number of high rated vulnerabilities is considered as the
most vulnerable one. The Number of pulls column denotes
the total number of pulls (downloads) for each image.

Out of the top 10 most vulnerable images, there are
8 community images, 1 official image (silverpeas) and
1 verified image (microsoft-mmlspark-release). There are
big variations in the number of vulnerabilities in all
presented severity levels. The most vulnerable image,



Image Critical| HighMedium| Low|Number of pulls
1 |pivotaldata/gpdb-pxf-dev 822| 698 576 132 139,246,839
2 |cloudera/quickstart 571|2,155| 1,897| 158 6,892,856
3 |silverpeas 341 264 397 226 828,743
4 |microsoft-mmlspark-release 184| 428 264| 252 1,509,541
5 |anchorfree/hadoop-slave 168| 636 797 107 5,375,424
6 |saturnism/spring-boot-helloworld-ui 133| 217 112 2 12,686,987
7 |pantsel/konga 133 39 169 0 12,431,685
8 [renaultdigital/runner-bigdata-int 127| 335 691| 103 4,787,745
9 |springcloud/spring-pipeline-m2 125 293]  2,027|1,357 8,359,973
10{raphacps/simpsons-maven-repo 122 271 399 2 36,136,733

TABLE 6: The most vulnerable images sorted by critical count
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Figure 4: The percentage of images that contain at least
one high or critical rated vulnerability.

pivotaldata/gpdb-pxf-dev, has ~250 more critical vulnera-
bilities than the second most vulnerable image. However,
the second most vulnerable image, cloudera/quickstart,
contains as many as 2,155 high rated vulnerabilities,
which is ~1500 more vulnerabilities than the one rated as
the most vulnerable image. It was chosen to focus on the
critical vulnerabilities in the ranking of the most vulnera-
ble images. This is because it is the highest possible rank-
ing and hence the most severe vulnerabilities will be found
in this category. The other severity categories are included
in the table as extra information and to give a clear view
on the distribution of vulnerabilities. From the number of
pulls column one can observe that the most vulnerable
image is also the most downloaded one out of the top 10,
with as many as 139,246,839 pulls. This is approximately
100 million more pulls compared to the second most
pulled image on this list (the raphacps/simpsons-maven-
repo image). There is no immediate correlation that could
be observed between the number of pulls and the number
of vulnerabilities in these images.

3.5. Percentage of images with critical and high
vulnerabilities

It is enough with a single vulnerability for a system
to be compromised. Thus, we determine what percentage
of images that contain at least one high or critical rated
vulnerability for each image type, as shown in Figure 4.

Our results (Figure 4) reveal that the certified image
type, which is a subsection of the verified image type, is
the most vulnerable by the means of this measure. 81.8%
of all certified images contain at least one vulnerability
with high severity level and 72.7% of them contain at least

one critical vulnerability. Community images come out as
the second most vulnerable image type. 67.4% have high
vulnerabilities and 45.1% have critical vulnerabilities. The
third most vulnerable image type is verified, followed by
official.

When combining these results, to investigate what
amount of the image types that contain either at least
one critical or high rated vulnerability, the results are as
follows: 81.8% for certified images, 68.4% for community
images, 56.7% for verified images and 45.9% for official
images. This makes the official images the least vulnerable
image type. However, it should be emphasized that still
almost half of the official images contain critical or high
rated vulnerabilities as presented in this section.

3.6. The trend in CVE vulnerabilities

This section will focus on the trend of all reported
Common Vulnerabilities and Exposures (CVE) vulnera-
bilities each year compared to the number of unique CVE
vulnerabilities found throughout our analysis. Data gath-
ered from the CVE Details database [17] is used to display
the number of new reported Common Vulnerabilities and
Exposures (CVE) vulnerabilities each year.

In Figure 5a the reported Common Vulnerabilities and
Exposures (CVE) vulnerabilities each year is presented
together with the unique CVE vulnerabilities found in our
analysis from 2010 to 2019. The orange line shows how
the number of new discovered CVE vulnerabilities varies
by a few thousand vulnerabilities each year. However,
there is a significant increase in 2017. This increase is not
reflected in the data from our analysis, which is following
a steady increase in the years from 2014 to 2017. This
increase can be explained by the introduction of Docker
Hub in 2014, making new vulnerabilities more represented
in images. As a final observation, the number of new
reported vulnerabilities from MITRE between 2018 and
2019 is decreasing, while there is an increase in our
results.

Figure 5b shows the number of unique vulnerabilities
found in each image type (i.e. community, official, verified
and certified) in our analysis from 2010 to 2019. This
figure gives an insight in how the overall changes are
reflected in each image type. Verified and certified images
have had an increase in the number of unique Common
Vulnerabilities and Exposures (CVE) vulnerabilities each
year from 2015. Community and official images, however,
have had a significant decrease of unique vulnerabilities
from 2017 to 2018. It is noteworthy to point out that
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Figure 5: CVE trend from 2010 to 2019, (a) displays all reported CVEs and all found, unique CVEs in our analysis,
(b) displays the CVE:s in the different image types from our analysis.

the curves are affected by the time of introduction of the
different image types. Official images were introduced in
2014, whereas verified and certified images were intro-
duced in 2018.

3.7. Days since last update

There is a high variation in how often Docker Hub
images are updated. Intuitively, this affects the vulnera-
bility landscape of Docker Hub. Hence, we have gathered
data about when images were last updated, and calculated
the number of days since the images were last updated,
counting back from February 25th, 2020. The data set
consists of last updated data for all analyzed images,
except five.

A brief analysis of the numbers from our database
revealed that 31.4% of images have not been updated in
400 days or longer and 43.8% have not been updated in
200 days or longer. The percentage of images that have
been updated during the last 14 days are 29.8%. This
implies that if these numbers are representative for all
images on Docker Hub, a third of the images (31.4%) on
Docker Hub have not been updated in the last 400 days
or longer.

To go into more detail, Table 7 presents how often
images in each of the image types are updated. Com-
munity and certified images are the least updated image
categories, where 47.0% of community images and 36.4%
of certified images have not been updated for the last
200 days or more. The verified images are the most
frequently updated category, where 83.3% of images have
been updated during the last 14 days.

A handful of certified images are highly affecting the
percentages from Table 7, because the overall number
of certified images is small. Official images contain a
high portion of images that have been updated recently
(January 2020 to March 2020), and some more spread
values with images that have not been updated since 2016.
The verified images are the most updated image type,
where there is only one image with the last updated time
earlier than May 2019.

Tmage type More than|More than| Less than
400 days | 200 days | 14 days
Community 33.9% 47.0% 27.0%
Official 9.6% 14.7% 51.3%
Certified 18.2% 36.4% 13.6%
Verified 1.7% 5.0% 83.3%

TABLE 7: The time since last update for all image types
presented in percentage

4. Correlation between image features and
vulnerabilities

We investigate whether or not the number of vulnera-
bilities in an image is affected by a specific image feature,
such as the number of times the image has been pulled, the
number of stars an image has been given, or the number
of days since the image was last updated. In order to find
out whether there is a correlation, we used Spearman’s 7
correlation coefficient [18]. Spearman’s correlation was
chosen because our data set contain skewed values and
are not normally distributed. When handling entries that
contained empty values, we opted for the approach of
complete case analysis, which means omitting incomplete
pairs. The alternative would be imputation of missing
values, which means to create an estimated value based
on the other data values. However, this approach was not
chosen because the values of our data set are independent
of each other.

Correlation between pulls and vulnerabilities. To check
the folklore wisdom about the following correlation: im-
ages with the most pulls generally have few vulnerabil-
ities, and images with the most vulnerabilities generally
have few pulls, we created a scatter plot given in Figure
6. However, after calculating the Spearman correlation
coefficient between the number of pulls and number of
vulnerabilities for the whole set of investigated images
we got 7 = —0.1115. This is considered as no particular
correlation. To explain this, we refer to the meaning of
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Figure 6: Number of pulls and number of vulnerabilities
for each image

having a high negative correlation: the markers would
gather around a decreasing line (not necessarily linear),
indicating that images with more pulls have less number
of vulnerabilities. In the case of high positive correlation,
the opposite would apply i.e. the line would be increasing.

Correlation between stars and vulnerabilities. The
correlation coefficient between the number of stars and
number of vulnerabilities is rs = —0.0335. Figure 7
shows the scatter plot when including number of stars
instead of number of pulls. The plot is similar to Figure
6, but the correlation is even weaker.
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Figure 7: Number of stars and number of vulnerabilities
for each image

Correlation between time since last update and vulner-
abilities. This correlation is calculated by computing the
number of days since the last update counting from the
day we gathered the data (which was February 25, 2020).
The correlation was 7y = 0.1075, which shows a positive
correlation as opposed to the other two. Figure 8 shows
the scatter plot, and although the markers are approaching
an increasing line a tiny bit, this is minimal. The value of
0.1075 is still not enough to state that there is a strong
correlation between the number of vulnerabilities and time
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Figure 8: Number of days since last update and number
of vulnerabilities for each image

since the last update. The markers slightly approach an
increasing line, indicating a weak tendency that there
are more vulnerabilities in images that have not been
updated for a long time. Still, the distribution of markers
is relatively even along the x-axis with the most markers
in the lower part of the y-axis, supporting that there is no
correlation.

5. The most severe vulnerabilities

5.1. The most represented critical vulnerabilities

The most represented severe vulnerabilities are, intu-
itively, the ones having the highest impact on the vulner-
ability landscape. Table 8 presents the most represented
critical rated vulnerabilities in descending order. The re-
sults are obtained by counting the number of occurrences
for each vulnerability ID in the critical severity level. The
critical count column is the number of occurrences for a
specific vulnerability. Lastly, the type(s) column presents
the vulnerability type of each of the vulnerabilities. This
data is gathered from the CVE Details database [19].

Vulnerability Critical
ID count Type(s)
1 | CVE-2019-10744 466 | Improper Input
Validation
2 | CVE-2017-1000158 464 Execute Code, Overflow
3 | CVE-2019-9948 378 | Bypass a restriction or
similar
4 | CVE-2019-9636 374 | Credentials Management
Errors
5 | CVE-2018-16487 365 | Security Features
6 | CVE-2018-14718 354 | Execute Code
7| CVE-2018-11307 337 | Deserialization of
Untrusted Data
8 | CVE-2018-7489 318 | Exccute Code, Bypass a
restriction or similar
9 | CVE-2016-5636 302 Overflow
10 | CVE-2017-15095 295 | Execute Code

TABLE 8: The most represented vulnerabilities (based on
critical severity level).



5.2. Vulnerability characteristics

We elaborate the top five most represented vulnerabil-
ities presented in Table 8 regarding their characteristics
and common features®. The top five severe vulnerabili-
ties are coming from two most popular script languages:
JavaScript and Python. As a general observation, the exe-
cute code is the most common vulnerability type, followed
by overflow.

The most represented critical vulnerability is found
466 times throughout our scanning. It has vulnerability
ID CVE-2019-10744, and a base score of 9.8, which is
in the upper range of the critical category (to examine
how base scores are determined, see Section 2.1). The
vulnerability is related to the JavaScript library lodash,
which is commonly used as a utility function provider
in relation to functional programming. This particular
vulnerability is related to improper input validation and
makes the software vulnerable to prototype pollution. It
is affecting versions of lodash lower than 4.17.12 [20]. In
short, this means that it is possible for an adversary to
execute arbitrary code by modifying the properties of the
Object.prototype. This is possible as most JavaScript ob-
jects inherit the properties of the built in Object.prototype
object. The fifth vulnerability on the list, CVE-2018-
16487, is also related to lodash and the prototype pollution
vulnerability.

Further, the second, third and fourth most represented
critical vulnerabilities are related to Python vulnerabilities.
The second vulnerability with vulnerability ID, CVE-
2017-1000158, is related to versions of Python up to
2.7.13. The base score is rated 9.8, and the vulnerability
enables arbitrary code execution to happen through an
integer overflow leading to a heap-based buffer overflow
[21]. Overflow vulnerabilities could be of different types,
for instance heap overflow, stack overflow and integer
overflow. Heap overflow and stack overflow are related
to overflowing a buffer, whereas integer overflow could
lead to a buffer overflow. A buffer overflow is related
to overwriting a certain allocated buffer, causing adja-
cent memory locations to be overwritten. Any exploit
of these kinds of vulnerabilities are typically related to
the execution of arbitrary code, where the adversary is
taking advantage of the buffer overflow vulnerability to
run malicious code.

The third presented vulnerability with vulnerability ID
CVE-2019-9948 is affecting the Python module urllib in
Python version 2.x up to 2.7.16. It is rated with 9.1 as base
score. This vulnerability makes is easier to get around se-
curity mechanisms that blacklist the £ile:URIs syntax,
which in turn could give an adversary access to local files
such as the /etc/passwd file [22]. The fourth vulnerability
is found 374 times and has vulnerability ID CVE-2019-
9636. 1t is affecting both the second and the third version
of Python (versions 2.7.x up to 2.7.16, and 3.x up to 3.7.2).
This vulnerability is also related to the urllib module,
more precisely, incorrect handling of unicode encoding.
The result is that information could be sent to different
hosts than intended if it was parsed correctly [23]. It has
a base score of 9.8.

6. Information about all vulnerabilities could be found by visiting
https://mvd.nist.gov/vuln/detail/

Package Critical count | Image count

1 jackson-databind-2.4.0 710 15
2 Python-2.7.5 520 207
3 jackson-databind-2.9.4 354 4
4 lodash-3.10.1 312 76
5  silverpeas-6.0.2 280 1
6  Python-2.7.13 248 141
7  Python-2.7.16 224 117
8  jackson-databind-2.6.7.1 215 13
9 jackson-databind-2.9.6 192 12
10 Python-2.7.12 185 107

TABLE 9: The most vulnerable packages (based on crit-
ical severity level).

6. Vulnerabilities in packages

6.1. The most vulnerable packages

Table 9 presents the packages that contain the most
critical vulnerabilities. The critical count column is ob-
tained by counting the total number of occurrences of
critical vulnerabilities in each package, while the image
count column is the number of images that uses each
package.

There is a clear relation between the most vulnerable
packages and the most represented vulnerabilities (Section
5), as expected. For example, vulnerabilities found in
Python version 2.x packages and in the Lodash package
are both presented in Section 5.

From Table 9, one can observe that the Python pack-
ages are by far the most used packages, and therefore they
expose the biggest impact regarding the threat landscape.
The lodash-3.10.1 package is found in 76 images. This
package contains the prototype pollution vulnerability af-
fecting JavaScript code, which also is the most represented
vulnerability in Table 8. Further, the jackson-databind
package is represented with four different versions in
Table 9 (entry 1, 3, 8 and 9). This package is used to
transform JSON objects to Java objects (Lists, Numbers,
Strings, Booleans, etc.), and vice versa. In total, these
packages are used by 44 images: a relatively low amount
compared to the usage of the Python packages. Finally,
the silverpeas-6.0.2 package contains 280 critical vulner-
abilities and is only used by a single image: the silverpeas
image on Docker Hub.’

6.2. Vulnerabilities in popular packages

When considering the packages that have the most
critical vulnerabilities (Table 9), some of the packages are
only used by a few images (like the silverpeas package).
Therefore, Table 10 is presented, as it is desirable to
see what the vulnerability distribution is like in the most
popular packages. The table shows the most used packages
and the number of vulnerabilities that are present in them,
considering all security levels. The image count column
contain the number of images that use this package.

As observable from Table 10, the most used packages
are not containing any critical, high, medium or low
vulnerabilities (except for one entry). However, they are
containing a vast number of negligible vulnerabilities,
which is of less significance from a security point of view,
as mentioned in previous sections.

7. https://hub.docker.com/_/silverpeas


https://hub.docker.com/_/silverpeas

Package Critical | High | Medium | Low | Negligible | Unknown igzlangte
1 tar-1.29b-1.1 0 0 0 0 482 0 241
2 coreutils-8.26-3 0 0 0 0 240 0 240
3 libpcre3-2:8.39-3 0 0 0 0 956 0 239
4 login-1:4.4-4.1 0 0 0 0 714 0 238
5 passwd-1:4.4-4.1 0 0 0 0 708 0 236
6  sensible-utils-0.0.9 0 0 103 0 0 111 214
7 libgerypt20-1.7.6-2+deb9u3 0 0 0 0 211 0 211
8  libgssapi-krb5-2-1.15-1+deb9ul 0 0 0 0 621 0 207
9  libkScrypto3-1.15-1+deb9ul 0 0 0 0 621 0 207
10 libkrb5-3-1.15-1+debSul 0 0 0 0 621 0 207

TABLE 10: Vulnerabilities in the most used packages.

7. Conclusions and future work

This paper summarizes the findings that we reported
in a longer and much more detailed work [8]. We studied
the vulnerability landscape in Docker Hub images by
analyzing 2500 Docker images of the four image repos-
itory categories: official, verified, certified images, and
community. We found that as many as 82% of certified
images contain at least one high or critical vulnerability,
and that they are the most vulnerable when considering
the median value. Official images came out as the most
secure image type with 45.9% of them containing at least
one critical or high rated vulnerability. Only 17.8% of the
images did not contain any vulnerabilities, and we found
that the community images are the most exposed as 8
out of the top 10 most vulnerable images are community
images.

Concerning the technical specifics about the vulnera-
bilities, we found that the top five most severe vulnerabil-
ities are coming from two of the most popular scripting
languages, JavaScript and Python. Vulnerabilities in the
Lodash library and vulnerabilities in Python packages
are the most frequent and most severe. Furthermore, the
vulnerabilities related to execution of code and overflow
are the most frequently found critical vulnerabilities. Our
scripts and tools are available from [8] and from the
GitHub repository.

For the future work we first propose two improvements
that are beyond our control, and are mostly connected with
the maintenance of all 3.5 million images at the Docker
Hub web site: 1. There is a need for a complete and well-
documented endpoint for image data gathering;, and 2.
There is a need for improvements on the Docker Hub
web pages to make it possible to access all images through
navigation.

Concerning improvements of this work, we consider a
future analysis that will run over a more extended period.
All previous studies conducted in this field, as well as
ours, have only analyzed vulnerabilities in Docker Hub
images captured from one single data gathering. Thus,
changes in the data set over time are still not investigated.
This type of analysis could reveal more in-depth details
about the characteristics and evolution of the vulnerability
landscape.

Lastly, we suggest future work to be targeting the
false positives and false negatives in container scanners
by integrating machine learning into container scanners.
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