
State of
Software
Security

VOLUME 11

Veracode State of Software Security: Volume 1102

Contents

Veracode State of Software Security: Volume 1102

03
SECTION ONE

Executive Summary
04	� The State of Software Security

at a glance

05	 Nature vs. nurture

06
SECTION TWO

Current State of
Software Security
07	 How common are application flaws?

09	 How flawed are the applications?

10	 Which flaws are more common?

13	 How are applications scanned?

15
SECTION THREE

The Tale of Open
Source Flaws
16	 The expanding attack surface

18
SECTION FOUR

Fixing Software Security
19	 What proportion of flaws are fixed?

21	 Regional differences

22	 How fast are flaws fixed?

24	 Finding factors for faster fixes

28	 Nature vs. nurture

30
SECTION FIVE

Conclusion
31	 Appendix: Methodology

Executive
Summary

SECTION ONE

Whether you agree with that statement or not,
it’s becoming clear that software permeates
practically every facet of our lives, even in
areas we don’t expect.

Over the past 11 years, we have explored the
challenges in secure application development
against the backdrop of new threats and evolving
expectations in our annual State of Software Security
report. For the 11th report, our focus is to look ahead
and identify how developers can continue along
their software development journey to make
applications better and more secure.

We continue our collaboration with the data
scientists at the Cyentia Institute to plumb the
dataset to find the untold stories of secure software
development. In Volume 10, we studied scan results
from over 85,000 applications. In this report, we
looked at data from over 130,000 active applications.

“�Every company is a software company.” 1

1 �We had a tough time attributing the first appearance of this statement, but a likely
candidate is: Kirkpatrick, David. “Now Every Company Is a Software Company.”
FORBES 188.11 (2011): 98-+

Veracode State of Software Security: Volume 1103

04 Veracode State of Software Security: Volume 11

SECTION 1

Two-thirds of applications are
either maintaining or reducing
the total amount of observed
security flaws between their
first and last scan.

97%

67%

The most common types of flaws are
much the same as previous years:

	 Information Leakage

	 CRLF Injection

	 Cryptographic Issues	

	 Code Quality

	 Credentials Management

SQL injection and Cross-Site Scripting
remain in the top 10.

Dynamic scans T H E C O M B I N AT I O N
C LO S E S F L A W S FA S T E RStatic analysis

While many teams focus on static analysis, dynamic scanning can
uncover types of flaws that might be hard for static analysis to
find. And even though adding dynamic application security testing
(DAST) will cause more flaws to be discovered, teams that combine
dynamic scans with static scans end up closing more flaws faster.

 FLAW SEVERITY SCANNING TYPE

 OPEN SOURCE

 FLAW REDUCTION

 FLAW TYPE

Open source libraries can be
a significant cause for concern.
For example, 97 percent of the
typical Java application is made
up of open source libraries.

1

2

4

5

3

The State of Software Security at a glance
One rather significant change this year: we are looking at the entire history
of active applications, and not just the activity associated with the application
over one year. This change gives us a view of the full lifecycle of applications
and enables more accurate metrics and observations.

76%

24%
Any Flaw High Severity

The vast majority
of applications
(76 percent) have
some sort of
security flaw, but
only a minority
(24 percent) have
high-severity flaws.

05 Veracode State of Software Security: Volume 11

SECTION 1

Higher Flaw Density

Larger Application

SCA with SAST

Steady Scan Cadence

SAST through API

Frequent Scanning

DAST with SAST

63

57

6

15.5

17.5

22.5

24.5

Remediate More/Faster

Remediate Less/Slower

EXPECTED CHANGE IN HALF-LIFE

DAYS QUICKER

DAYS SLOWER

Larger Organization

Older Application

14

3

We found there are some factors that teams have a lot of control over, and those they
have very little control over — we’re thinking of them as “nature vs. nurture.” On one
side, the “nature” side, we looked at factors developers have very little control over —
size of the application and organization, security debt,2 and others. On the other side,
the “nurture” side, we looked at factors that developers have direct control over, such
as scanning frequency and cadence and scanning via API.

The goal of software security isn’t to write applications perfectly the first time, but to
remediate the flaws in a comprehensive and timely manner. We know that it is easier to
find and fix issues in applications that have less coding baggage — small application size,
using modern languages and frameworks — but even with the “baggage,” development
teams that use secure coding practices, such as frequently scanning for flaws, integrating
and automating security checks, and taking a broader look at the application’s health,
are more likely to have better success with their secure software development efforts.

Large, legacy applications and
those with significant security
debt clearly have an uphill climb.

 WE PRESENT HOW EACH OF THESE FACTORS AFFECT THE HALF-LIFE

 (TIME TO CLOSE HALF OF THE OBSERVED FINDINGS).

2 �Security debt actually straddles
both nature and nurture. Developers
may inherit debt (nature), but it is a
choice whether to accumulate it or
pay it down (nurture).

Nature vs.
nurture

This year, we researched how significant factors can
contribute to (or detract from) closing more flaws
and closing them faster.

Current State
of Software Security

SECTION TWO

Last year, Veracode celebrated 10 editions
of the State of Software Security report.
This year, we figured we might as well turn
it up to 11. Over that decade++, the State
of Software Security report has grown as
software security has grown. Veracode has
seen exponential growth in applications
scanned this year compared to the first
edition in 2009 (over 130,000 applications
this year). But the number of applications
isn’t the only thing that’s grown in 11 years.
New languages and frameworks have
appeared, and old standbys have risen,
fallen, and risen again. Development
practices have evolved. New threats and
pitfalls rear their ugly heads. This report
has always kept pace with the shifting
sands of secure application development,
and this year is no different.

This year, we are also expanding the
scope of the data we are analyzing. In
previous volumes, we looked at the active
development of applications in a one-year
time frame. This year, we are going back
in time a bit further, and looking at the
complete history of applications that were
actively developed in the past year. So
we’ll get a fuller view of the origin story
of an application, along with all its flaws.

With Volume 10, we spent some time
looking at how much things had changed
in the decade spanning Volume 1 to
Volume 10. With Volume 11, we are going
to look forward and consider the direction
software development is headed. We are
not trying to decide if we are doing better
or worse than before, but looking at what
kind of impact the decisions developers
make have on software security.

We asked some of the same questions:
how common are application flaws? Which
flaws are more common? But we also dug
deeper in some areas than we have in
the past, such as examining third-party
libraries in applications. It may not make
sense to directly compare this report
with previous volumes because of the
underlying differences in the data and
findings, but there is plenty of insight
that developers and application security
teams can use to make decisions on
how to improve their applications.

“This one goes up to 11.” NIGEL TUFNEL, SPINAL TAP

Veracode State of Software Security: Volume 1106

Veracode State of Software Security: Volume 11

SECTION 2

07

How common are application flaws?
We’ve tracked flaw prevalence, or the proportion of applications with at least one flaw,
since Volume 1 of the report. We aren’t talking about how “bad” the application is or
how many flaws it has, but just whether it has at least one problem that could be fixed.
In Volume 1, we found that 72 percent of the applications had at least one flaw. In this
report, we find that at least 76 percent of the applications have at least one flaw in the
latest scan run by customers.

When we look at the last 10 years for context, we can see that this year’s report falls
within the range between Volume 1’s 72 percent and Volume 10’s 83 percent. The slight
increase from Volume 1 could be explained partially by the fact that more applications
across more languages are being scanned, and the downward shift from Volume 10 could
be explained by the fact that different types of scanning capabilities (static scanning,
dynamic analysis, and software composition analysis) are included in this year’s report.
In short, we can’t look at this year’s results on this question to definitely say that things
are better or worse.

75.8%

65.8%

58.8%

23.7%High Severity

SANS

OWASP

Any Flaws

Let’s begin with a
simple snapshot of
the most recent scans
of applications, and
ask “What percentage
of applications
have some sort of
security flaw?”

 VOLUME 1 VOLUME 10 VOLUME 11

72% 83% 76%

Applications with at least one flaw:

Figure 1: Percent of applications
with various flaw types

Veracode State of Software Security: Volume 11

SECTION 2

08

The revelation that most applications have some form of flaw should not be
earth-shattering to anyone reading this report. Even so, we want to be clear that having
a flaw in the application is just part of the story. We know that developers treat different
types of flaws differently. Some flaws are fixed quickly, while some are considered less
severe and can be moved to the back burner. It’s instructive to compare applications
based on how many have severe3 flaws.

The good news is that it appears we are moving in the right direction when we consider
the severity of the flaw: There are fewer applications with severe flaws than ordinary
run-of-the-mill flaws. Sixty-six percent of applications have at least one flaw that
appears on the OWASP Top 10, and 59 percent of applications have at least one flaw that
appears on SANS 25. After the most recent scan, 24 percent contain high-severity flaws
(those rated by Veracode as level 4 or 5), which is a slight increase from the previous
report’s 20 percent, but still within range of past years’ results.

A message that we’ve previously shared, but it bears repeating: This is a good sign. Most
applications have flaws, but not all flaws are catastrophic, and the more severe the flaws
are, the more likely it is that any particular application will be free of them. A little over
three-quarters of the applications may have at least one flaw, but most of them aren’t
the critical issues that pose serious risks to the application.

3 �We take several different approaches to viewing the severity of a flaw. The OWASP Top 10 (2017) lists the most common
critical flaws in web applications, and SANS 25 (recently renamed to CWE/SANS Top 25) lists common critical flaws found
in modern software development. Lastly, we assign our own severity rating (a scale of 1 to 5) based on the flaw type and
language. Developers can adjust that severity rating manually, since they are the ones with the context on how a flaw
would impact their application.

 THE GOOD NEWS

It appears we are
moving in the right
direction when we
consider the severity
of the flaw.

There are fewer
applications with
severe flaws than
ordinary run-of-
the-mill flaws.

We analyze the types of flaws discovered
later in the report.

Veracode State of Software Security: Volume 11

SECTION 2

09

How flawed are the applications?
We want to understand the extent of the problem, but we can’t just count how
many flaws there are and compare the numbers. It’s not fair to compare the number
of flaws in a massive enterprise desktop application to the number of flaws in a
tiny microservice. We account for different application sizes by counting flaws per
megabyte in each application. This measure of flaw density allows us to make an
apples-to-apples comparison of applications of different sizes.4

In the figure below, we examine flaw density across all applications that have one
or more flaws. Each point represents 0.1 percent of applications placed horizontally
based on its flaw density. The 1,000 points avoid each other by spacing themselves
out vertically. The resulting shape gives us an idea of the relative frequency of
different densities.

With flaw density, we observe a trend similar to what we saw in applications with
flaws. Flaw density is lower when we focus on high-severity flaws. Figure 2 tells us
that applications have problems that need to be fixed, but most of them are not
riddled with catastrophic issues.

Knowing the overall
percentage of
applications with
flaws is a good,
time-tested metric,
but as we noted
earlier, it tells
only part of
the story.

Critical Flaws

SANS Flaws

OWASP Flaws

Any Flaws

0.01 0.1 1 10 100 1000 10k

FLAW DENSITY (PER 1 MB)

4 �We understand that this is not a perfect apples-to-apples comparison for all applications. For example, different
languages are more or less verbose when producing semantically identical code.

Figure 2: Application flaw
density for various measures
of flaw severity

 EXPONENTIAL GROWTH

We use the log scale for this figure’s horizontal axis, because of the exponential growth
in flaw density in applications. Each step along the axis represents an order of magnitude
change. So moving from 1 to 10 or from 10 to 100 means the flaw density has increased
10 times, not just that there are 10 more.

Veracode State of Software Security: Volume 11

SECTION 2

10

Which flaws are more common?
Before we can even start thinking about application security and how to fix the flaws,
we need to understand the myriad different types those could be. There are a wide
variety of frameworks available for categorizing and organizing different types of software
flaws. We’ve already used two (OWASP Top 10 and SANS 25) to break out by severity, but
we would be remiss if we didn’t dive deeper. These security frameworks and types can
guide application security teams into making different decisions about how to proceed
with fixing and addressing flaws.

One of the most comprehensive frameworks is Common Weakness Enumeration (CWE).
The CWE framework organizes hundreds of possible flaws into vast flexible hierarchies.
Indeed, our two previously mentioned measures of severity, OWASP Top 10 and SANS 25,
can be viewed as a more manageable subset of the elephantine CWE.

Developers and security teams rely on these lists to figure out which flaws are considered
to be highest risk and to prioritize getting them fixed. Injection flaws make up the first
item in the OWASP Top 10 Web Application Security Risks, and with good reason, as our
chart shows. CRLF injection was found in more than 65 percent of applications with
a flaw, and SQL injection was among the top 10 list of most common flaws found.

So far, we have
used two metrics
to measure the
security of an
application: “does
the application
have a flaw?” and
flaw density.

0.0%
0.0%
0.7%
1.3%
1.5%
1.6%
2.0%
2.3%
2.8%
3.0%

5.5%
6.4%

7.9%
8.5%
8.7%

9.4%
9.7%

11.3%
12.3%
12.7%

14.3%
19.4%

27.8%
29.0%

47.1%
47.8%
48.1%
48.3%

60.4%
63.7%

65.4%
65.9%

Coding Standards
Other

Format String
Dangerous Functions

Numeric Errors
Bu�er Overflow

Bu�er Management Errors
Deployment Configuration

Insecure Dependencies
Server Configuration

Error Handling
Untrusted Search Path

Code Injection
Race Conditions

Authentication Issues
Authorization Issues

Potential Backdoor
Untrusted Initialization

Session Fixation
API Abuse

Command or Argument Injection
Time and State

SQL Injection
Encapsulation

Cross-Site Scripting (XSS)
Directory Traversal

Insu�cient Input Validation
Credentials Management

Code Quality
Cryptographic Issues

CRLF Injection
Information Leakage

 TOP FLAW TYPES

For the most part, the top flaw types have stayed fairly
consistent over the years. Volume 10 last year found that
information leakage, cryptographic issues, CRLF injection,
and code quality flaws were the most common types of flaws
found in applications. In this year’s research, the top three did
not move around, and the third place “cryptographic issues”
are also found in almost two out of three applications with
flaws in this report.

Figure 3: Percentage of applications with specific CWE types

Veracode State of Software Security: Volume 11

SECTION 2

11

CRYPTOGRAPHIC ISSUES

As developers are increasingly tasked to protect data as they move in transit or in
storage, there are opportunities to make mistakes in how they handle cryptography.
Cryptographic issues include a variety of weak password mechanisms, weak
pseudorandom number generators, and generally bad cryptography implementations —
many of which are the result of using outdated cryptographic libraries, or trying to roll
their own.5 Implementing cryptography incorrectly can be just as problematic — if not
more — for the application than not having any cryptography at all.

CODE QUALITY

Code quality is a tricky category, since it refers to weaknesses that indicate the
application has not been carefully developed or maintained, and does not directly
introduce a vulnerability in the application. Code quality is an issue because it causes
the application to behave unpredictably, and that erraticness can be abused.

UNCOMMON FLAWS

What is heartening is that flaws that we might think of as particularly damaging are also
relatively uncommon. Less than 5 percent of applications have the types of flaws (buffer
management, buffer overflow, code injection, etc.) we could expect to be abused and
lead to remote code execution or other problematic results. Part of that is because many
modern languages and frameworks have built-in capabilities to address whole classes
of flaws. The shift away from C++ in newer applications means fewer buffer management
flaws, broadly speaking. Using higher-level languages (or language frameworks) and
standardized libraries makes it easier for developers to avoid certain types of flaws.

5 �In these crazy times, it may seem nigh impossible to come together as a community and agree on a single, universal truth.
But for the good of our society (and application security), let’s all agree that nobody should be rolling their own crypto.

Turning our attention to Figure 4, we look at how flaw
density and flaw prevalence are related across different
CWEs. In general, we see a trend — the more prevalent a
flaw type is across applications, the more densely it
occurs within applications.

Veracode State of Software Security: Volume 11

SECTION 2

12

CODING STANDARDS

Coding standards is a good example to look at for
flaw density. Flaws related to coding standards are
pretty rare overall, made evident by the fact that
they show up on the leftmost part of the chart, but
appear in droves (over 30 flaws per 1mb) when one
exists in an application. Whether or not developers
are adhering to coding standards is something that
would be consistent during development, so it is
logical that those issues permeate the application.

CRYPTOGRAPHIC ISSUES

In comparison, cryptographic issues are on
the rightmost part of the chart as they exist in
60 percent of applications with flaws but at a
density of three flaws per mb of code. Developers
tend to implement cryptography in specific parts
of the application, though, so we expect to see
lower density as the issues are concentrated
to a fewer number of places. Additionally, fixing
cryptographic issues can range in complexity
and effort from one-line fixes to multi-release
transitions to new technologies.

CROSS-SITE SCRIPTING AND CREDENTIALS MANAGEMENT

Cross-Site Scripting and credentials management flaws appear in
a little less than half of the applications, but Cross-Site Scripting
issues show up in greater numbers within the application than
credentials management does. Again, that is logical because
credentials management flaws will likely be an issue only in parts
of the code relating to authentication and authorization, while there
are many opportunities for making mistakes that result in Cross-Site
Scripting. Although Cross-Site Scripting flaws are generally a quicker,
and usually easier, fix than credentials management flaws, they both
appear in just under half of applications, suggesting the ease of
fixing is just one of many factors considered when fixing flaws.

SQL INJECTION

SQL injection is another flaw type to pay attention to in this figure.
As you may recall, injection flaws are among the most common
flaw types, and SQL injection was among the 10 most common flaws
found in applications that had at least one flaw. The flaw density
for SQL injection is close to the middle, suggesting there are many
areas within the application with this type of flaw. SQL injection
would be an issue in any part of the application that interacts with
the database, which, depending on the application, could mean
a pretty significant chunk. Most (maybe all?) modern languages
support parameterizing database queries, so fixing SQL injection
flaws is usually a straightforward task, but not always a quick
change depending on the prevalence and density we observe.

API Abuse

Authentication Issues
Authorization Issues

Bu
er Management Errors

Bu�er Overflow Code Injection

Code Quality

Coding Standards

Command or Argument Injection

Credentials Management

CRLF Injection
Cross-Site Scripting (XSS)

Cryptographic Issues

Dangerous Functions

Deployment Configuration

Directory Traversal

EncapsulationError Handling

Format String

Information Leakage

Insecure Dependencies

Insu�cient Input Validation

Numeric Errors

Other

Potential Backdoor

Race Conditions

Server Configuration

Session Fixation

SQL Injection

Time and State
Untrusted Initialization

Untrusted Search Path

0.1

1.0

10.0

0% 20% 40% 60%

PERCENT OF APPLICATIONS WITH FLAW TYPE

M
ED

IA
N

 F
LA

W
 D

EN
SI

TY
 (

W
H

EN
 O

B
SE

R
VE

D
)

Figure 4: Flaw prevalence
by median flaw density for
CWE categories

Information leakage, CRLF
injection, and cryptographic issues

are all in the rightmost part of
the figure because they exist in

many applications, and hoo-boy when
they do, they appear a lot.

Veracode State of Software Security: Volume 11

SECTION 2

13

How are applications scanned?
Academics in the software engineering community have spent decades devising
multiple ways to unearth flaws from code, but for the most part, the methods fall
into one of the two categories of scanning: static application security testing (SAST)
and dynamic application security testing (DAST).

Static analysis relies on scrutinizing the codebase for flaws and is typically the
method most developers think of when scanning applications for flaws. It excels at
finding many of the common issues, such as directory traversals, Cross-Site Scripting,
and various injection flaws. Dynamic analysis looks while it’s running and evaluates
how the application interacts with its environment. Dynamic excels at finding issues
with server and deployment configuration and authentication issues.

Until now, we’ve
been looking at the
results of scanning
the applications
without considering
how those flaws
are discovered.

Static Scanning Dynamic Scanning

CWE-548

CWE-298

CWE-522

CWE-215

CWE-83

CWE-297

CWE-296

CWE-693

CWE-352

CWE-538

CWE-402

CWE-614

CWE-757

CWE-526

CWE-16

Exposure of Information Through Directory Listing

Improper Validation of Certificate Expiration

Insu�ciently Protected Credentials

Insertion of Sensitive Information Into Debugging Code

Improper Neutralization of Script in Attributes in a Web Page

Improper Validation of Certificate With Host Mismatch

Improper Following of a Certificate’s Chain of Trust

Protection Mechanism Failure

Cross-Site Request Forgery (CSRF)

Insertion of Sensitive Information Into
Externally-Accessible File or Directory

Transmission of Private Resources
Into a New Sphere (‘Resource Leak’)

Sensitive Cookie in HTTPS Session
Without ‘Secure’ Attribute

Selection of Less-Secure Algorithm During
Negotiation (‘Algorithm Downgrade’)

Exposure of Sensitive Information
Through Environmental Variables

Configuration

80%60%40%20%0%10%

Figure 5: Percentage of applications with various CWE types in static vs. dynamic scanning

Veracode State of Software Security: Volume 11

SECTION 2

14

These are complementary methods and should not be considered as subsets of each
other or replacements as they bring their own strengths to application security. Think
about annual health checkups. You get bloodwork done and have a physical because
they look for different things. You don’t assume you are healthy on the basis of one test;
you wait for all your test results.

Figure 5 highlights how much deeper the scanning goes when dynamic scanning is added
to the static scanning that is already being done. Some flaws become more prevalent
when dynamic scanning is used in conjunction with static analysis. Both static scanning
and dynamic scanning can find issues such as using sensitive cookies in HTTPS sessions
without the secure attribute, but dynamic analysis scanning is more likely to find them
much more frequently than static analysis.

Dynamic scanning will uncover issues that are not part of your code, but rather in
how the environment is set up. The application exposing sensitive information through
environmental variables is a problem that exists in 60 percent of applications. It is a
flaw that will not be uncovered if the developers are relying only on static analysis.

 DYNAMIC SCANNING

Some flaws become
more prevalent when
dynamic scanning is
used in conjunction
with static analysis.

Focusing on only one type of scan means a whole
set of potential flaws may not be discovered,
leaving developers in the dark about a significant
swath of issues across their application.

The Tale of
Open Source
Flaws

SECTION THREE

Earlier this year, we published a “spinoff” version
of the SOSS focused on open source flaws. We’ll
likely do that again but felt compelled to include
some statistics related to open source code in this
report as well. Even if developers wave a magic
wand and voila! all the flaws we’ve discussed so far
disappear from their own code, that doesn’t mean
applications would become flaw-free. It’s never
that easy in software security.

Veracode State of Software Security: Volume 1115

Veracode State of Software Security: Volume 11

SECTION 3

16

Pulling in those components means the flaws they contain become part of your
application. Let’s look at some of the data specific to the security challenges
of including open source libraries.

The most basic question we could ask is exactly how much of an application is
composed of open source libraries. The answer can be found in Figure 6. Each dot in
this chart represents 1 percent of the applications in each language, and the horizontal
position of the dot indicates the percent of the application’s code composed of
third-party libraries.

For example, Java applications (shown at the top of Figure 6) cluster to the right,
indicating that they tend to be almost all third-party code — and indeed, the typical
Java application is 97 percent third-party code! However, that pattern does not emerge
with other languages. JavaScript and Python applications cluster at both ends, much
like a barbell — so from a pure code-volume perspective, applications tend to be mostly
homegrown or composed mostly of third-party libraries. C++ and PHP cluster completely
in the opposite direction of Java, indicating the codebase is mostly homegrown. Only
.NET applications seem to be fairly spread out, suggesting developers tend to be a bit
more flexible in how libraries are used.

Virtually no modern
application can avoid
including open source
libraries that provide
functionality that
would be difficult
or time-consuming to
write from scratch.

PHP

C++

Python

JavaScript

.Net

Java

80% 100%60%40%20%0%

Figure 6: Percentage of application size that is third-party code
 EACH DOT

Represents 1 percent of the
applications in each language.

The expanding attack surface

Veracode State of Software Security: Volume 11

SECTION 3

17

The ubiquitousness of open source libraries was evident when we released the State
of Software Security: Open Source Edition report. However, there was something else
we learned there; about seven in every 10 applications were found to have flaws in
their open source libraries (on initial scan). This alone should warrant adding software
composition analysis into any software security program. But we can take this one step
further this time around. We looked at how many flaws were found in open source
libraries and compared that to how many flaws were found in the primary application
(code written in-house), and we found about three in every 10 applications have more
flaws in their open source libraries than in the primary code base.

One last little insight we found here: There is almost no correlation between the flaw
density in open source library flaws versus those in the primary application. This means
that it’s possible to have a very well buttoned-up application, yet vulnerabilities may be
exposed through third-party libraries.

More Findings in
Third Party Libraries

More Findings in Primary
(Home-Grown) Applications69.1% 30.9%

 KEY LESSON

Software security comes from getting the
whole picture, and that means identifying
and tracking the third-party open source
libraries used in your applications.

Figure 7: Third-party vs. first-party security flaws

https://info.veracode.com/report-state-of-software-security-open-source-edition.html
https://info.veracode.com/report-state-of-software-security-open-source-edition.html

Veracode State of Software Security: Volume 1118

It is inevitable that software will have flaws, so
until now we’ve focused on understanding what it
means when we say that applications have flaws.
However, accepting there will be flaws does not
mean there is nothing that can be done. Indeed,
many companies (including Veracode!) make it
their business to help developers write more
secure code. Software security depends on how
development and application security teams
address the issues that exist in the applications.
We look at the question of how applications are
fixed from multiple perspectives.

Fixing Software
Security

SECTION FOUR

Veracode State of Software Security: Volume 11

SECTION 4

19

What proportion of flaws are fixed?
In this year’s report, we see that 73 percent of discovered flaws have been closed or
remediated, which is a shift compared to recent years6 (52 percent in 2018, 56 percent
in 2019). From earlier, we know that the prevalence of flaws hasn’t changed dramatically
as compared to previous years, so we can chalk up the fact that roughly three out of four
flaws are being fixed as an improvement in how flaws are being handled. We explore the
reasons that may explain the improvement shortly.

Logically, we anticipate that flaws aren’t fixed in the order they are found, and that there
is some kind of prioritization that happens first. We see a slight preference for fixing
flaws that may be considered more problematic over general ones, such as those from
OWASP and SANS lists. We also see that high-severity flaws were 18 percent more likely
to be addressed than general flaws. As we discussed earlier, we found high-severity
(level 4 or 5) vulnerabilities in 24 percent of applications, indicating that while many
applications have flaws, few of those flaws pose serious risk to the applications.

One thing to remember about the report is that we are comparing the application’s
first scan results with the latest one within a 12-month period (April 2019 to March 2020).
While it’s heartening to know that nearly three out of four flaws are being closed, bug
hunting becomes a game of whack-a-mole if new bugs are being introduced at the
same pace as the fixes being made. The chart comparing flaw density between the
first and last scans illustrates whether the fixes are being made faster than new
ones are introduced.

To understand how
flaws are dealt
with, we look at
the proportion of
discovered flaws
that are closed or
remediated in the
following figure.

72.6%

76.0%

77.9%

82.0%

All Flaws

OWASP 10

SANS 25

High Severity

FIX RATE
Figure 8: Fix rate for
various severity types

6 �The increase can be explained partly by the fact that we changed how we looked at the data in this year’s report. In previous
years, we looked at flaws only that were active during the report period (including everything still open from before the year).
However, for this report, we analyzed the full history of active applications, so the number of closed flaws reflect all the flaws,
including those that were closed before the report period.

 WHAT WE SEE HERE

When flaws pose serious risk, they appear
to be prioritized over other, less severe flaws.

Veracode State of Software Security: Volume 11

SECTION 4

20

While the number of flaws in applications ebb and flow over time, for the majority
of applications, the overall flaw density is decreasing over the course of development.
Generally speaking, more applications reduced the flaw density, as half of the
applications had fewer flaws on the latest scan than in the first scan. Flaw density
was higher for 34 percent of the applications, suggesting the development teams were
not prioritizing fixing flaws as they went along, but were perhaps saving them for later.

That picture gets sharper when considering the seriousness of the flaws. When looking
at only high-severity flaws, roughly twice as many applications (23 percent) reduced the
overall flaw density than those that increased (12 percent).

50% 16% 34%

41.5% 23.5% 35.0%

44.8% 29.9% 25.3%

23% 65% 12%

Reduced Amount of Flaws No Change Increased Flaws

High Severity

SANS

OWASP Top 10

All Flaws

PERCENT OF APPLICATIONSFigure 9: Flaw reduction
for various flaw types

 HIGH-SEVERITY FLAWS

Roughly twice as many applications (23 percent) reduced the
overall flaw density than those that increased (12 percent).

 PRIORITIZATION

Flaw density was higher for 34 percent of the
applications, suggesting the development teams
were not prioritizing fixing flaws as they went
along, but were perhaps saving them for later.

Veracode State of Software Security: Volume 11

SECTION 4

21

Regional differences

72.7%

62.8%

74.7%

ALL FLAWS

81.5%

90.9%

84.5%

Americas

APAC

EMEA

Americas

APAC

EMEA

FIX RATE

HIGH SEVERITY

51% 34%

49% 38%

45% 34%

23% 12%

23% 11%

26% 14%

Reduced Amount of Flaws

Americas

APAC

EMEA

Americas

APAC

EMEA

PERCENT OF APPLICATIONS

Increased Flaws

ALL FLAWS

HIGH SEVERITY

 FIXING FLAWS

Even when we look for regional variations, the
behavior remains the same: development teams
are fixing flaws, and they are prioritizing fixing
the worst flaws over general ones.

Figure 10: Flaw prevalence across regions Figure 11: Fix history for various regions

SECTION 4

Veracode State of Software Security: Volume 1121

 FLAW DENSITY

The overall pattern holds true across regions for flaw
density, as well. For most applications, flaw density is
decreasing between first and latest scan, and about a
third have an increase.

While there are some variations, for the most part, developers don’t change their
behavior based on where they are located. Roughly three out of four flaws are being
closed in the EMEA (Europe, Middle East, and Africa) region, as well as in the Americas
(North America, Central America, and South America). Closer to three out of five flaws
are being fixed in APAC (Asia-Pacific), although that picture is reversed when we
focus on only the high-severity flaws. For high-severity flaws, EMEA and the Americas
continue to keep pace with each other, at 85 percent and 82 percent, respectively,
but 91 percent of high-severity flaws are being closed in APAC.

We wondered if there
were differences in
how quickly flaws were
being fixed across
different geographies.

Veracode State of Software Security: Volume 11

SECTION 4

22

How fast are flaws fixed?
But it’s trickier to measure the teams’ reaction times, to establish how quickly the
developers are addressing the flaws as they are discovered. With the top half of
Figure 12, we know that 50 percent of the closed flaws were closed within 86 days.
This is fairly consistent with other industry reports, showing that flaws tend to be
fixed within the first three months of discovery.

Looking at just fixed flaws misses an essential point: many flaws are not closed, and the
older the flaw, the less likely those flaws will ever be fixed. The bottom half of Figure 12
shows flaws that were still open as of the latest scan, and we can see that 50 percent of
flaws have been open for at least 216 days, and counting. This is especially problematic
since some of the open findings may never be closed, and so will never be factored into
the metric for expected close time.

The median time-to-close only focuses on part of the data (the remediated flaws), and so
it tells only part of the story. It tells us something about 76 percent of the flaws that were
actually closed, but when a new flaw is discovered, we don’t know if it will be like the
76 percent of closed flaws, or like 24 percent of flaws that remain open. Luckily, we aren’t
the first people to run into this, and there are better techniques7 we can apply. When we
account for both the closed and open flaws, we find it takes about 180 days (6 months)
to close half of the flaws discovered. That’s a far cry from the 86 days, but it paints a
much more realistic picture since it leverages all the information at our disposal.

We can show how
applications get
better over time by
looking at all the
flaws fixed between
the first and latest
scans, and counting
how many days it
took for the flaw
to show up as fixed
in the scans.

These are staying open day after day

Open
Findings

Closed
Findings

10 100 1000

AGE (DAYS)

MEDIAN
86 days

MEDIAN
216 days

Figure 12: Median flaw closing times for applications

7 �We apply statistical methods collectively referred to as “survival analysis” and the label given to flaws that
are still open (or events that haven’t occurred yet) is “censored data” if you’d like a fun search term.

Veracode State of Software Security: Volume 11

SECTION 4

23

Figure 13 shows the full picture of the expected remediation timeline and has a few
annotations calling out milestones along the remediation path.

Simply put, while many flaws are being addressed promptly, older flaws tend to
linger over time. There are several reasons to explain why. The development team
may be rationalizing against fixing the flaw because it hasn’t caused any problems,
yet, or thinking that there is no need to spend additional time on a legacy application.
Another reason for the lingering flaws could be logistics. The team may not have the
capacity to devote the time to fixing flaws, especially if there is more emphasis placed
on developing new features rather than reducing security debt.

While Figure 13 paints the remediation timeline based on the applications we
observed, we can go deeper than just speculation about what may contribute to
remediating more software flaws faster. The next section digs into various attributes
of applications, the actions developers can take, and what effect that has on
remediation times.

0%

25%

50%

75%

100%

TIME

P
R

O
B

AB
IL

IT
Y

FI
N

D
IN

G
 I

S
ST

IL
L

O
P

EN

6 months 1 year 1.5 years

1 in 4 flaws are fixed
in the first 32 days

Half of the flaws are still
open after the first 6 months

Half of the flaws are fixed
in the first 6 months

1 in 4 flaws remain open
after a year and a half

Figure 13: Survival curve
of flaw closure

 FLAW CLOSURE

While many flaws are being
addressed promptly, older flaws
tend to linger over time.

Veracode State of Software Security: Volume 11

SECTION 4

24

Finding factors for faster fixes
In past SOSS reports, we’ve observed that there are things development teams can
do to improve software security, especially in regards to how quickly flaws are fixed.
In v9, we focused heavily on the number of security scans and measured substantial
improvements. In v10, we examined the cadence of those scans and demonstrated that
more regular scanning led to better performance than irregular activity such as scanning
in bursts followed by periods of no activity. Scanning applications frequently and on a
regular cadence is representative of a DevSecOps approach, while timing fixes around
major releases tend to be more common in teams taking a waterfall approach.

Scanning frequency and cadence are but two aspects of software development in
a sea of possibilities. For example, Figure 14 depicts how long applications took on
average to close 50 percent of their open flaws split out by their scan frequency. Clearly,
applications that scan infrequently (less than 12 times in a year) spent about 7 months to
close half their open findings, while applications that scanned at least daily (on average)
reduced that time by more than a third to close 50 percent of flaws in about 2 months.

Scan frequency and the cadence of scanning are two things the developer directly
controls, but there are many others. Software security depends on a combination of
the applications’ environment and developer practices: nature and nurture. A developer
dropped into an application has little control over the maturity of the codebase, its
history, or size: the application’s “nature.” However, how the developer chooses to
“nurture” that application is well within his or her control — how often the application
is scanned, the cadence with which it’s scanned, what types of scanning are done,
and how third-party code is managed.

It would be naive
to argue that
software security
is just about
development teams
writing code and
fixing flaws when
they find them.

62 days

77 days

124 days

217 days

260+ Scans
daily+ average

53–260 Scans
weekly-daily average

13–52 Scans
monthly-weekly average

1–12 Scans

Figure 14: Time to remediate 50%
of flaws based on scan frequency

 SCAN FREQUENCY

Clearly, applications that scan infrequently spent about 7 months
to close half their open findings, while applications that scanned
at least daily reduced that time by more than a third.

We recognize that a developer inheriting a large, mature codebase that is just being
maintained faces a very different set of challenges than a team that is starting out with
a smaller, more focused application, but we can see that developers have some control
over the security of their application.

Veracode State of Software Security: Volume 11

SECTION 4

25

The next set
of analyses is
an attempt to
separate out the
effects of nature
vs. nurture on
the remediation
rates of flaws
in an application.
Because this is
somewhat of a
big undertaking,
let’s be precise
about what we
are examining.
First, we look at
the type of things
that are, for the
most part, out of
developers’ hands.

8 �The size of the organization can
impact the decisions developers
make during the course of
development, but it is very clearly
not up to the developer. It is
arguable whether the last two
(application size and flaw density)
are part of the application’s nature,
or the result of development. We
take the perspective that these
are artifacts of the history of
development rather than something
that the individual developer has
direct control over. Similarly,
application age, or how long an
application has been scanned by
Veracode’s tools, is part of the
development history and usually
not the result of a single
developer’s decision.

The only factor we haven’t yet discussed thus far in the report is API integration.
And that’s on us, because what we found for applications that have integrated security
testing with the API (that is, building security analysis directly into the development
pipeline) is quite interesting. Not only does the integration make scanning more
automated and easier, but it also negates the need for developers to remember to
manually run the security scanner. More importantly, we found a significant change
in the remediation rates for applications that integrate scanning into the pipeline.
Incidentally, when we look at the data, we find that API usage also has an impact on scan
frequency and cadence. Meaning when applications use the API, we observe applications
being scanned more frequently and with a steadier cadence. Even though the three
factors have some correlation, we were able to look at them separately to understand
the impact each one has on the application.

 “NURTURE”

SCAN FREQUENCY
Frequent Scanning

How many times in a year the application
was scanned (with SAST)

SCAN CADENCE
Steady Scan Cadence

Measures the variation in how frequently the
applications are being scanned and ranges
from regular, steady scanning (typically because
scanning is part of continuous integration) to
bursty and sporadic scanning (followed by long
periods of no scanning)

DYNAMIC ANALYSIS
DAST with SAST

The application is being scanned using
dynamic analysis

SOFTWARE COMPOSITION ANALYSIS
SCA with SAST

The application’s open source libraries
are being scanned

API INTEGRATION
SAST through API

If the application uses the API to run the
scanner, and suggests the developers are
following continuous integration practices
for pipeline automation

 “NATURE”

ORGANIZATION SIZE
Larger Organization

Size of the organization
measured by revenue

APPLICATION AGE
Older Applications

How long an application has
been using Veracode (days
since the first recorded scan)

APPLICATION SIZE
Larger Applications

Size of the application
measured in mb

FLAW DENSITY
High Flaw Density

Calculated as flaws per 1 mb
of code, a way to think about
and capture “security debt”
in applications

8

Veracode State of Software Security: Volume 11

SECTION 4

26

In the previous section, we discussed that it wasn’t enough just to see if a flaw gets
closed or not because we also want to know how quickly that flaw gets closed. To that
end, we built a model that accounts for both the open and closed flaws that is able to
account for multiple facts and can quantify the effect of various “nature” and “nurture”
factors on how quickly flaws are closed.

First, we extract from the model how each factor changes the median time to flaw
remediation. We want to see which factors are likely to lead to flaws getting fixed faster,
and which factors lead to slower fixes. The results are seen in Figure 15.

Figure 15: The effect of factors
on flaw closure time

Factors pointing to the left are correlated with flaws being remediated more/faster,
while those pointing to the right are associated with less/slower remediation. Some
of the factors are binary, such as whether dynamic scanning is turned on or off for
the application, and others are continuous, such as how frequently an application is
being scanned. For continuous variables, the effect represents a shift of one standard
deviation in the variable. Encoding the continuous variables this way allows a relatively
easy comparison across the disparate scales for each variable.

Higher Flaw Density

Larger Application

SCA with SAST

Steady Scan Cadence

SAST through API

Frequent Scanning

DAST with SAST

63

57

6

15.5

17.5

22.5

24.5

Remediate More/Faster

Remediate Less/Slower

EXPECTED CHANGE IN HALF-LIFE

DAYS QUICKER

DAYS SLOWER

Larger Organization

Older Application

14

3

Veracode State of Software Security: Volume 11

SECTION 4

27

 THE “NATURE”

 OF APPLICATIONS

We should pause for a moment and consider these results in a larger context. The results
above echo what people in application security have assumed. But suspecting something
is very different from actually having it confirmed empirically in the data, and to our
knowledge, this is the first time someone has taken these assumptions and measured it.
When we tell developers the performance of teams with specific behaviors are different
from those without those behaviors, we can now show and talk about just how much
they differ. We can clearly see the impact of security debt on older applications here,
as it slows down the pace of fixing flaws by months and hampers future development.

 THE “NURTURING”

 OF APPLICATIONS

One thing that is clear is that one of the biggest obstacles for developers is a ponderous
application with a dodgy security history. Large applications with high flaw density slow down
the remediation rate of flaws by about 2 months each. Now with our nature versus nurture
analogy, it’s not typically possible to change any of the factors on the nature side. But we are
talking about applications that we created, so we should have some influence in the nature
we create or even the nature we are handed.

IF YOU ARE BUILDING UP A NEW APPLICATION

Keep an eye on the size and complexity of the application. Larger applications are clearly
associated with slower/less remediation times. As development progresses, stay on top
of the flaws as they are discovered — don’t let that security debt pile up.

IF YOU HAVE INHERITED A LARGE APPLICATION WITH SECURITY DEBT

The data suggests that teams should consider rearchitecting their applications or
retire legacy applications in favor of streamlined code. Refactoring applications to
use microservices may help clean up some of the issues, especially if the same flaw
is present in different parts of the application.

But there is hope, as there are several things that a developer can have more direct
control over, and those are the things we generally associate with good development
practices and faster flaw remediation.

SCAN FREQUENCY AND DYNAMIC SCANNING

Scanning frequently and using dynamic scanning in addition to static can each reduce
the half-life by as much as a month. Dynamic scanning may improve fix rates because
it highlights to developers that a vulnerability does, in fact, have “real-world” risk.

API INTEGRATION

There are positive, though smaller, effects for API integration (again building security
scanning into the developer pipeline), software composition analysis, and setting up
a steady scanning cadence. We noted earlier that the API integration can be linked to
scan frequency, and we see that relationship in this chart. Developers should ensure
that they reap the benefits of frequent application scanning by making sure the
API is part of their development workflow.

Veracode State of Software Security: Volume 11

SECTION 4

28

 THE “NATURE” OF APPLICATIONS

 THE “NURTURING” OF APPLICATIONS

IDEAL
ENVIRONMENT

IDEAL TEAM LESS IDEAL TEAM

LESS IDEAL
ENVIRONMENT

• Small organization
• Small application
• Low flaw density
• New application

• Regular, frequent
scanning

• Variety of
scanning types

• Large organization
• Large application
• High flaw density
• Old application

• Only static scanning
• Infrequent scanning

at irregular intervals

Nature vs. nurture
So we look at the factors as a group, and ask that age old question: nature or nurture?
In order to determine whether the greatest impact comes from things the developer
can’t change, or decisions under the developer’s control, we begin with two hypothetical
applications. The first comes from an ideal environment (nature), which is defined as a
small organization with an application that is small in size, has low flaw density, and is
relatively new (application age). The second has less ideal properties, which is a large
application built long-ago at a large organization with high flaw density. We also have
two hypothetical teams working on these applications. One team follows best practices,
including frequent, regular scanning, using a variety of scanning types, and including
software composition analysis. The other team uses only static scanning, infrequently
and at irregular intervals.

Even though we
looked at each of the
factors individually,
we know that very
few of these things
exist in isolation in
real-world software
development.

Veracode State of Software Security: Volume 11

SECTION 4

29

QUICKEST LINE

Good attributes
and actions

SLOWEST LINE

Poor attributes
and actions

Good attributes
and poor actions

0%

20%

40%

60%

80%

100%

6 months 1 year 1 year 6 months

TIME FROM FLAW DISCOVERY

PR
O

B
AB

IL
IT

Y
FI

N
D

IN
G

 I
S

ST
IL

L
O

PE
N

Poor attributes
and good actions

Figure 16 shows how quickly each team — with positive and negative behaviors — closes
the flaws in each application — with positive and negative attributes. The slowest line
here (the top line closest to the upper right) represents an application challenged with
negative attributes and negative behaviors of the team. They tend to close quite a bit
slower and less flaws than anyone else. The quickest line here (the bottom line closest
to the lower left) represents the best case: positive attributes of the applications with
a proactive development team with positive behaviors. In reality, most applications
will fall between those two with a mix of attributes and actions.

What’s interesting here is the impact good practices can make. In our idealized “good”
application, having good practices mean 50 percent of flaws are closed in just under
2 weeks (13 days), while bad practices on that same application can mean it will take
almost twice that time (25 days) to close 50 percent of flaws. The differences are even
more stark when looking at “bad” applications. A team with bad practices working on a
less-than-ideal application may take nearly a year (314 days) to close 50 percent of flaws.
A team with good practices on that same unideal application would cut that time to
about 6 months (184 days).

In previous reports, we’ve discussed the link between frequently scanning applications
and faster remediation times. With this year’s data, we see a clearer pattern emerge with
other developer behaviors. It makes sense that flaws are fixed quicker in applications
that are being developed under ideal conditions, but the pattern shows that developers
can also influence the outcome by changing their specific behaviors.

Figure 16: The remediation
rates of positive and negative
attributes and actions

 GOOD ACTIONS +

 GOOD ENVIRONMENT

Can reduce half-life
from 25 to 13 days

 GOOD ACTIONS +

 POOR ENVIRONMENT

Can reduce half-life
by more than 4 months

Veracode State of Software Security: Volume 1130

Conclusion
SECTION FIVE

Even if the developer has inherited an
old, gargantuan application with heaps
of security debt, and there is no one
left who remembers why some things
were coded that way, fixing flaws and
adding new features don’t have to
continue being difficult. What the data
tells us is that even when faced with
the most challenging environments,
developers can take specific actions
to improve the overall security of the
application. Several of the developer
best practices we highlight in this
SOSS align closely with behaviors we
typically associate with DevSecOps.

Scanning applications frequently
and on a regular cadence and fixing
the flaws as they are found (and not
waiting for major releases) is common
practice among DevSecOps teams.
We see the effects of using different
types of scanning technologies in
order to get a more comprehensive
view of the application. We see how
fixing flaws in smaller and newer
applications tend to be quicker,
which may encourage decisions
such as re-architecting parts of the
application to smaller components.

Embedding security testing into
the pipeline (through an API) is
another sign of the team’s approach
to continuous integration. That
automation can tighten up the
cycle of feedback developers
receive and make security testing
more effective, and indeed we see
improved remediation times with
that integration.

We’ve looked at the effect of nature
and nurture on the security of our
applications. We found that nurture
— our decisions and actions — can
overcome and improve the nature
of the application and environment.
There are many solutions available
for developers to help them
discover and manage the flaws
that creep into applications.

But know this: you are able to take action
and make decisions that will improve the
security of your application!

TO LEARN MORE ABOUT SOFTWARE SECURITY, CONTACT US.

https://info.veracode.com/web-contact-us.html?utm_source=main_navigation&utm_medium=website

Veracode State of Software Security: Volume 11

SECTION 5

31

Appendix: Methodology
Veracode methodology for data analysis uses a sample of applications that were
under active development from a 12-month sample window. The data represents
the full history of applications that had assessments submitted from April 1, 2019
through March 31, 2020. This differs from past volumes of the State of Software
Security, as we only looked at the assessments that occurred in a 12-month
window and not the entire history of applications. This accounts for a total of
132,465 applications, 1,049,742 scans, and 10,712,156 flaws. The data represents large
and small companies, commercial software suppliers, software outsourcers, and
open source projects.9 In most analyses, an application was counted only once,
even if it was submitted multiple times as vulnerabilities were remediated and
new versions uploaded. For these snapshots, we examine the most recent scan.

For the software component analysis, each application is examined for
third-party library information and dependencies. These are generally collected
through the applications build system. Any library dependencies are checked
against a database of known flaws.

The report contains findings about applications that were subjected to static
analysis, dynamic analysis, software composition analysis, and/or manual
penetration testing through Veracode’s cloud-based platform. The report
considers data that was provided by Veracode’s customers (application portfolio
information such as assurance level, industry, application origin) and information
that was calculated or derived in the course of Veracode’s analysis (application
size, application compiler and platform, types of vulnerabilities, and Veracode
Level — predefined security policies which are based on the NIST definitions
of assurance levels).

Any reported differences (between languages, scan types, flaw types, etc)
are statistically significant at the p < 0.001 level. Because of the large data
size we are able to discern even incredibly small effect sizes.

A NOTE ON MASS CLOSURES
While preparing the data for
our analysis, we noticed several
large single-day closure-events.
While it’s not strange for a scan
to discover that dozens or even
hundreds of findings have been
fixed (50% of scans closed three
or less findings, 75% closed less
than 8), we did find it strange
to see some applications closing
thousands of findings in a single
scan. Upon further exploration,
we found many of these to be
invalid: developers would scan
entire filesystems, invalid branches
or previous branches, and when
they would rescan on the valid
code, every finding not found again
would be marked as “fixed.” These
mistakes had a large effect: the top
one-tenth of one-percent of the
scans (0.1%) accounted for almost
a quarter of all the closed findings.
These “mass closure” events have
significant effects on exploring
flaw persistence and time-to-
remediation and were ultimately
excluded from the analysis.

A NOTE ON “SANDBOX” SCANS
Developers will sometimes create
a “sandbox” for the purpose of a
one time evaluation of a piece of
code. Unfortunately, these scans
are divorced from any information
about the application and its
history. In the future we may
examine how the use of these
sandbox scans might affect the
mainline analysis of applications.
For now, these scans are excluded
from the analysis.

9 �Here we mean open source developers who use Veracode tools on applications in the same way closed
source developers do. This is distinct from the software component analysis presented in the report.

SECTION 5

Veracode is the leading AppSec partner for creating secure
software, reducing the risk of security breach and increasing
security and development teams’ productivity. As a result,
companies using Veracode can move their business, and the world,
forward. With its combination of automation, integrations, process,
and speed, Veracode helps companies get accurate and reliable
results to focus their efforts on fixing, not just finding, potential
vulnerabilities. Veracode serves more than 2,500 customers
worldwide across a wide range of industries. The Veracode cloud
platform has assessed more than 14 trillion lines of code and
helped companies fix more than 46 million security flaws.

www.veracode.com Veracode Blog Twitter

TO LEARN MORE ABOUT SOFTWARE SECURITY, CONTACT US.

Copyright © 2020 Veracode, Inc. All rights reserved. All other brand names,
product names, or trademarks belong to their respective holders.

https://info.veracode.com/web-contact-us.html?utm_source=main_navigation&utm_medium=website

