
Solving Multicore Interference
for Safety-Critical Applications

Contents
Executive Summary..1

Introduction..1

The Single Core Solution......................................2

Sources of Multicore
Interference..2

Effects of Multicore
Interference can be Significant............................3

Alternative Solutions for
Interference Mitigation...3

The INTEGRITY-178 tuMP
Multicore RTOS...4

Fine-Grained Bandwidth
Allocation Mitigates Multicore
Interference..5

Multicore Interference
Mitigation in Action...6

Executive Summary
The use of multicore Arm®, Intel®, and Power
Architecture® processors in safety- and security-critical
systems, such as integrated modular avionics (IMA),
presents challenges for determinism and safety due
to substantial variations in worst-case execution times
resulting from contention for access to shared processor
resources. The effects of such multicore interference can
be significant, and mitigation is best done with support
from the operating system. A general solution is needed
that enables changes to the applications without
needing to retest every application. One such solution
is fine-grain control of the system bandwidth allocated
to each processor core. When combined with time and
space partitioning, such interference mitigation speeds
development, testing, verification, and certification of
multicore safety-critical systems.

Introduction
Safety-critical systems for airborne applications are
gradually adopting multicore processors to realize the
benefit of increased throughput while decreasing size,
weight, and power of the computing solution. Together
these benefits enable consolidation of multiple functions
in an integrated modular avionics (IMA) solution. It is
important to note that a goal of IMA is to enable efficient
and reliable sustainment and growth of the systems’
functionality via software upgrades, improvements, and
additions at an affordable cost. Achieving that goal can
be very difficult because of the increased variability that
occurs when multiple processor cores try to access the
same shared resources concurrently. In safety-critical
applications, the principal concern is how such shared
resource contention can cause an application running on
one core to interfere with a different application running
on another core, negatively affecting determinism, quality
of service, and, ultimately, safety. Without a general
solution for mitigating such multicore interference, any
software changes or additions will require extensive
retesting and analysis of the entire system, contrary to
the goals of IMA.

The Single Core Solution

In a single-core processor, multiple safety-critical
applications may execute on the same processor by
robustly partitioning the memory space and processor
time between the hosted applications. Memory space
partitioning dedicates a non-overlapping portion of
memory to each application running at a given time,
enforced by the processor’s memory management unit
(MMU). Time partitioning divides a fixed time interval,
called a Major Frame, into a sequence of fixed
sub-intervals referred to as partition time windows.
Each application is allocated one or more partition time
windows, with the length and number of windows being
factors of the application’s worst-case execution time
(WCET) and required repetition rate. The operating
system ensures that each application is provided
access to the processor‘s core during its allocated time.

Sources of Multicore Interference

On a multicore processor, applications are time-
partitioned on each core but can be running concurrently
with applications on other cores. The problem is that
each of the concurrent applications needs access to the
processor’s shared resources. All multicore processor
architectures include shared resources, such as memory
controllers, DDR memory, I/O, shared cache, and the

internal fabric that connects them (Figure 1). Contention
for these shared resources results when a processor
core tries to access a resource that is already servicing
another processor core. The resulting delay is a form
of interference that could prevent a high-criticality
application from performing its intended function
within its required timeframe. Because the DMA
engine can execute in parallel with the cores, it
presents an additional source of interference.

Directly addressing the issue of multicore interference,
the Certification Authority Software Team (CAST),
supported by the FAA, EASA, TCCA, and other aviation
authorities, has published guidance for multicore
systems in a position paper called CAST-32A. CAST-
32A includes 10 objectives that need to be satisfied
to address the concerns with the use of multicore
processors. One of the objectives that directly addresses
multicore interference requires the applicant to identify
all the interference channels that could affect the
software applications hosted on the processor cores
and verify the effectiveness of the chosen means
of mitigation.

To truly identify all the sources of multicore interference
requires a deep understanding of the multicore
processor subsystems, how they operate, and how
they interact. Such understanding can include
hardware details such as DDR geometry, memory
controller scheduling priorities, cache replacement
policies, the multicore interconnect’s arbitration schemes,
and hardware initialization & configuration options.

Gaining an understanding of multicore interference
and mitigation is not just a concern for safety but also
security. If the availability of one application can be
affected by another, then it is neither safe nor secure.
Digging a little deeper, the sources of covert timing
channels required for many types of security attacks
are often the same sources of interference with respect
to availability concerns. The bottom line is that multicore
interference needs to be tightly mitigated.

2

Core 0 Shared
Cache

I/O

System Interconnect

Memory
Controller

DMA
Engine

Accelerators

Core 1 Core 2 Core 3

Figure 1: Separate processor cores (gray) share many
resources (green) ranging from the interconnect to

memory and I/O.

Effects of Multicore Interference
Can Be Significant

This concern over multicore interference can appear to
be excessive given that individual access times to shared
resources are usually much less than 1 microsecond.
These small increments can add up quickly, however,
and repeated interference can act as a temporary denial
of service. In the simplest case with fair arbitration of
resource access, two cores trying to access the same
resource simultaneously in the same way, would each
get half the of the bandwidth of that resource. Similarly,
four cores would each get a quarter of the bandwidth.
Having an application at the highest design assurance
level (DAL A) take four times longer is far from desirable.
To make matters worse, the accesses are not always the
same type, and arbitration is not always fair in precisely
the way one would hope.

Consider multiple cores accessing DRAM. Due to shared
resource arbitration and scheduling priorities in the DDR
controller, fairness is not guaranteed, and interference
impacts are often non-linear. The type of operations or
combination of operations (e.g. reads, writes, coherency
traffic, broadcast operations, etc.) and/or which specific
core they are executing on, plays a significant role in the
interference impact. For example, write operations to
memory can generate a disproportionate amount of
interference over read operations on certain architec-
tures. Although some companies have claimed that
multicore interference causes worst-case execution
time (WCET) to double or triple at the most, tests on
Power Architecture® cores show that a single interfering
core can increase WCET on another core by a factor
of 8x. With multiple sources of interference from multiple
cores, increases in WCET of over 12x have been
observed in a quad-core system just from the cores
accessing DDR memory over the on-chip interconnect.
Those increases do not factor in the impact of I/O
accesses or the DMA engine running simultaneously.

Figure 2 shows example memory access bandwidth
for DAL A and DAL C applications on different
processors trying to access DRAM simultaneously.
The desired outcome is for the DAL A application to
get the vast majority of the bandwidth. Without any
interference mitigation, one might predict that the
bandwidth would be split evenly. Actual observed results
on Power architecture cores show that the DAL C
process gets the vast majority of bandwidth if it is doing
certain types of operations, up to 8X the bandwidth of
the DAL A process for merely a single interfering core.

Alternative Solutions for
Interference Mitigation

There are a variety of possible approaches to reducing
and mitigating multicore inference. In theory, it would be
desirable to reduce the interference as much as possible
to make the job of mitigation easier. In practice, most
methods to reduce interference require greatly restricting
the applications or significantly reducing efficiency and
throughput of the overall solution. For example, restricting
all the applications running on each core to be at DAL B
or higher would ensure that only well tested and reliable
applications are present, and those presumably would
be less likely to cause runaway or unknown interference.
Another approach could be to take all the I/O and move
that to a single core with time partitioning, but that could

Figure 2: Example memory access bandwidth for DAL A
and DAL C applications on different processors

trying to access DRAM simultaneously.

Desired Predicted Actual

Core 0
at DAL A

Core 1
at DAL C

100%

80%

60%

40%

20%

Memory Bandwidth Per Core
(Core 0 reads & Core 1 writes)

3

require rewriting existing applications and reducing
the utilization of the other cores. Even if that approach
worked for I/O accesses, it doesn’t address the more
significant problem of interference for DDR memory. All
applications need to access DDR memory unless they
are so small as to run out of local core cache memory.

The DMA engine is one resource that benefits from
more careful management. By managing the timing of
I/O and when it causes DMA transfers, the amount of
interference caused by the DMA engine can be reduced.

The vast majority of multicore interference cannot be
reduced, only mitigated. Mitigation approaches can vary
greatly from “just deal with it” to automated fine-grained
control of access to shared resources that monitor and
strictly enforce the use of shared resources. A simple but
inefficient approach is just to estimate the new WCET
given maximal interference, set the partition time window
to that new WCET, and test extensively to verify that
application consistently completes within the window.
The biggest drawback to that approach is the vast
underutilization of multicore throughput if the new WCET
is 10x the non-interfering time when a more active miti-
gation strategy might require only 1.5x. Additionally, this
could lead to increased sustainment costs as applica-
tions are added or updated on the system and the WCET
changes, thus requiring further regression testing.

A better approach is to monitor the access to shared
resources and regulate access if a core exceeds a
predetermined threshold. This can be accomplished
using the hardware counters available on most multicore
processors and is relatively straightforward at a macro
level. Each application gets a threshold set for its partition
time window, and if that threshold is exceeded, then the
application is suspended. Such a coarse-grain approach
can work well to catch a misbehaving application but
does not address the more common case of a lower
criticality application taking bandwidth from a higher
criticality application. For that, fine-grain control is
required where the threshold applies to a time slice that
is many times smaller than the partition time window.

With such fine-grain control, bandwidth to shared
resources for a lower-critically application is throttled
back to the desired threshold rate, and the higher
criticality application gets its full allocation of bandwidth
from the beginning of its partition time window.

The INTEGRITY-178 tuMP
Multicore RTOS

The INTEGRITY®-178 tuMP™ multicore RTOS is
explicitly designed to meet the challenge of high
processor utilization, application portability, and true
IMA operation while mitigating multicore interference
and providing DO-178B/C DAL A safety-critical
operation. Available on Arm, Intel, and Power
Architectures, INTEGRITY-178 tuMP delivers on the
key tenets of IMA: consolidation, portability,
sustainment, and reuse to enable higher functionality
and lower life-cycle costs.

The INTEGRITY-178 tuMP RTOS is a high-assurance
operating system certified for both safety and security.
It provides partitioning of memory space, processing
time, and processor resources to ensure safety-critical
applications meet their real-time deadlines. In 2002,
INTEGRITY-178 became the first commercial
partition-enforcing RTOS certified as complying with
DO-178B Level A objectives. With a high degree of
code reuse, the INTEGRITY-178 tuMP multicore RTOS
was delivered to customers in 2010. Today, it is the only
RTOS certified conformant to the latest version of the
Future Airborne Capability Environment (FACE™)
Technical Standard, Edition 3.0. Superior utilization of
all cores on a multicore processor can be enabled by
providing several options for a multi-processing software
architecture that are supported by the RTOS to run
applications across multiple cores simultaneously.
The INTEGRITY-178 tuMP multicore RTOS provides
the system software architect with the flexibility of full
multicore support for all combinations of Asymmetric
Multi-Processing (AMP), Symmetric Multi-Processing
(SMP), and Bound Multi-Processing (BMP) in a

4

time-partitioned manner. BMP is an enhanced and
restricted form of SMP that can statically bind an
application’s tasks to a specific set of cores, allowing the
system architect to more tightly control the concurrent
operation of multiple cores. The AMP, SMP, and BMP
operational requirements for each of the individual IMA
applications are defined at build time. These definitions,
as well as when and how often they execute within
a partition schedule, are managed by the system’s
software architect using statically defined system
configuration files. Support for BMP operation is required
to meet the latest revision of ARINC 653 Part 1 Required
Services (Supplement 4), and INTEGRITY-178 tuMP
is the only ARINC 653 RTOS that complies with
Supplement 4.

Fine-Grained Bandwidth Allocation
Mitigates Multicore Interference

As described above, mitigation of multicore interference
is best done by allocating shared resource bandwidth to
each core and then enforcing that allocation in very small
time intervals. Such fine-grain monitoring and enforcing
allocations of bandwidth to shared resources can
currently only be done at the operating system level.

INTEGRITY-178 tuMP includes a Bandwidth Allocation
and Monitoring (BAM) capability to observe interference
channels and mitigate them. Based upon more than 50
staff-years of research and development into multicore
interference analysis and mitigation strategies, BAM
monitors and enforces the bandwidth allocation of the
chip-level interconnect to each of the cores. Because
the chip-level interconnect is at the center of interactions
between the cores and other shared resources, it is the
ideal place to observe and enforce limits on the use of
shared resources. Green Hills Software has implemented
an internal mechanism for INTEGRITY-178 tuMP’ band-
width allocation and monitoring that uniquely uses an
extremely small time quantum to enforce the cores’
use of shared multicore resources as opposed to the
typical approach using high-level fault detection. In that

way, BAM throttles the bandwidth of any resource hog
throughout the partition time window, and the other
processes do not have to wait until the resource hog
has consumed all of its allocation for its partition time
window.

The system architect decides how much bandwidth
to allocate to each core based on the functional re-
quirements of the applications or design assurance
levels. When applications on a particular core reach the
threshold bandwidth for a given BAM time quantum, that
core is cut off from consuming shared resources until
the next BAM time quantum. Using this mechanism, a
DAL A application running on core 0 can be allocated
a set amount of resources, such as 60% of the total
bandwidth, while the other 3 cores could be allocated
only 15%, 15%, and 10% respectively (see Figure 3).
BAM is developed to DO-178C DAL A objectives, and it
allows integrators to mitigate interference issues.

Setting the proper bandwidth allocation requires analysis
and testing of the application. To aid in that analysis,
Green Hills Software provides interference generat-
ing libraries, DMA generating libraries, and bandwidth
reporting libraries. The interference and DMA generating
libraries are tailored to each processor architecture and
contain hundreds of interference profiles to simulate
interference for worst-case scenarios. Running the
interference and DMA generating libraries on all cores
not used by a particular application concurrently with
the application execution provides the new multicore

5

Figure 3: Example bandwidth allocations

80

60

40

20

Example Bandwidth Allocations

Core 0 Core 1 Core 2 Core 3

worst-case execution timing (WCET). Without the ability
to generate worst-case interference from both the DMA
engine and the other cores, it would be easy to vastly
underestimate the multicore WCET.

The bandwidth reporting library uses the interference and
DMA generating libraries to get a measured assessment
of the total amount of bandwidth available after account-
ing for the DMA interference. Knowing the total band-
width available aids in setting the bandwidth allocation
thresholds in BAM. The bandwidth reporting library runs
the interference and DMA generating libraries across
a configurable number of cores concurrently. Specific
subsets of the hundreds of interference profiles can be
selected in order to tailor the evaluation more closely to
the expected applications, and custom interference pro-
files can be created. The available bandwidth depends
not only on the processor model but also the memory
type, clock speed, configuration registers, and which
interference profiles were selected to approximate the
final application configuration.

Multicore Interference
Mitigation in Action

The following figures show an example that illustrates
the improved timing characteristics when BAM is
enabled. The data used is taken from results measured
on a quad-core Power Architecture processor, and the
application execution times are relative to the application
running on a single core while the other cores are idle.
The application under test is running on core 0, with the
interference generating libraries running on the other
cores. Figure 4 shows how the execution time of the
application running on core 0 increases as the number
of interfering cores increases. When one other core runs
the inference library, the execution time of the application
under test skyrockets over 7x. With a second and third
interfering core added, the execution time increases
further to over 13x. Note that this worst-case behavior
is much worse than the linear 2x, 3x, 4x that might be
expected for average cases.

6

15

10

5

WCET with Interference

Number of Interfering Cores
(quad-core Power Architecture)

None One Two Three

Re
la

tiv
e

Ex
ec

ut
io

n
Ti

m
e

unmitigated

Figure 4: Worst-case execution timing varies with number of interfering cores

To mitigate that interference, the system architect uses
BAM to set a maximum bandwidth allocation for each
core. Once the bandwidth from the interfering cores is
limited, the execution time of the application under test
comes back under control and remains nearly constant
as the number of interfering cores increases. When
the application under test is allocated 80% of the total
shared-resource bandwidth, execution takes only 1.4x
longer than when it runs by itself and maintains approxi-
mately that execution rate when one or more interfering
cores run simultaneously. Figure 5 shows that 1.4x exe-
cution rate for 80% bandwidth allocation, as well as the
performance for different allocations at 50% and 25%
bandwidth. Note that even with only a 25% bandwidth
allocation, nominally an equal share of the bandwidth,
the application still runs 2.5x faster than without any
interference mitigation.

Taken together, the interference and DMA generating
libraries, bandwidth library, and BAM runtime mechanism

provide the tools necessary for a system integrator to
determine multicore worst-case execution times, mitigate
interference, and certify multicore systems. These
interference mitigating capabilities provided by Green
Hills Software reduce certification risk and enable faster
time-to-market by simplifying the verification and analysis
activities while also significantly lowering the cost of long
term sustainment and growth of the system. Without
such multicore interference mitigation capabilities, system
reverification after adding or modifying applications
incurs a very high risk of needing to retest every appli-
cation. As a result of such risks, system level analysis
techniques are insufficient to support the intent of IMA
systems. For multicore-based IMA systems, functional
capabilities like bandwidth allocation and monitoring are
a fundamental requirement if that system is to provide
the full set of benefits of an IMA architecture.

Looking at the overall safety-critical system, BAM
reduces risk and simplifies the development, integration,

deployment, and sustain-
ment of critical systems.
BAM enables optimal
core utilization in critical
systems yielding superior
size, weight, and power as
well as spare computing
capacity. This bandwidth
allocation and monitoring
capability is critical for IMA
OEMs and developers.

7

15

10

5

WCET with BAM Mitigation

Number of Interfering Cores
(quad-core Power Architecture)

None One Two Three

Re
la

tiv
e

Ex
ec

ut
io

n
Ti

m
e

Figure 5: Worst-case execution timing stays steady after applying BAM

25% allocation
unmitigated

50% allocation
80% allocation

Corporate Headquarters
30 West Sola Street • Santa Barbara, CA 93101

ph: 805.965.6044 • fax: 805.965.6343 • email: info@ghs.com • www.ghs.com

European Headquarters
Fleming Business Centre • Leigh Road • Eastleigh • Hampshire S050 9PD • United Kingdom

ph: +44 (0)2380 649660 • fax: +44 (0)2380 649661 • email: info-emea@ghs.com

Safety & Security Critical Products
34125 US Hwy 19 North • Suite 100 • Palm Harbor, FL 34684

ph: 727.781.4909 • fax: 727.781.3915 • email: info-sscp@ghs.com

Green Hills, the Green Hills logo, INTEGRITY, and tuMP are trademarks or registered trademarks of Green Hills Software in the US and/or internationally.
All other trademarks (registered or otherwise) are the property of their respective owners.

© 2019 Green Hills Software. v0719

