Commonwealth Blue Charter webinar: Unlocking the wealth of mangrove ecosystems

27 July 2020

Commonwealth Blue Charter webinar: Unlocking the wealth of mangrove ecosystems

2:00 PM - 2:05 PM Opening Remarks

Mr Jeff Ardron, Adviser - Ocean Governance and Project Lead, Commonwealth Blue Charter,

Commonwealth Secretariat

2:05 PM - 2:10 PM Special Address from the Blue Charter Action Group Champion for Mangrove Ecosystems and

Livelihood

Ms Hasanthi Dissanayake, Director General, Ocean Affairs, Environment and Climate Change, Ministry

of Foreign Relations, Sri Lanka

2:10 PM - 2:35 PM Presentations by the Speakers

Dr Rahanna Juman, Director (Acting), Institute of Marine Affairs, Trinidad and Tobago

Dr Judith Okello, Senior Research Scientist, Kenya Marine and Fisheries Research Institute, Ministry of

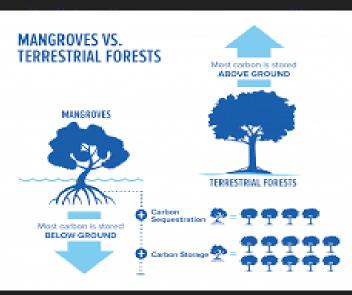
Agriculture, Livestock and Fisheries, Kenya

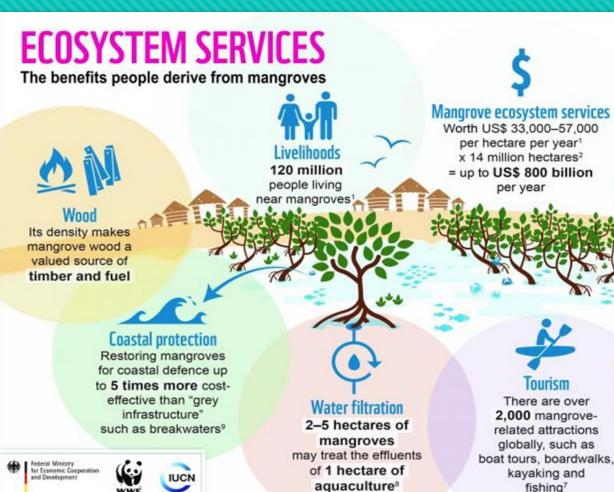
Ms Achini Fernando, Assistant Marine Environment Officer, Marine Environment Protection Authority, Sri

Lanka

Ms Leah Glass, Global Strategic Lead - Mangrove Conservation, Blue Ventures

2:35 PM - 2:55 PM Question & Answers


2:55 PM - 3:00 PM Concluding Remarks


International Day for the Conservation of the Mangrove Ecosystem – JULY 26

- The International Day for the Conservation of the Mangrove Ecosystem, adopted by the General Conference of UNESCO in 2015 and celebrated each year on 26 July.
- It is aimed at raising awareness of the importance of mangrove ecosystems as "a unique, special and vulnerable ecosystem" and to promote solutions for their sustainable management, conservation and uses.

Carbon in take potential of mangrove forests is 3-5 times higher than tropical upland forests

Mangrove ecosystem services

Climate regulation

Carbon storage potential of mangroves is 3-5x higher than that of tropical upland forest due to strong carbon storage in the soil3; CO2 released by global mangrove loss annually could be as high as the annual emissions

of Australia4-5

Fisheries

More than 3000 fish species are found in mangrove ecosystems6

Sources: OUNEP, 2014 • O Giri et al., 2011 • O In the Indo-Pacific region: Donato et al., 2011 • O Up to 450 million t CO:: Pendleton et al., 2012 • O In 2015: EDGARv4.3.2., 2018 • O Sheaves, 2017 • O Spalding et al., 2016 O Primavera et al., 2007 · O In Vietnam: Narayan et al., 2016

50% of global mangrove cover has been lost over the last 50 years

THREATS

Drivers of mangrove loss

35% between 1980 and 2000¹ - the equivalent of losing almost 150,000 🔯 annually², and

4 times higher than overall global forest loss³

Climate change

Air temperature and rainfall regimes influence global mangrove distribution⁴; abrupt changes in sea level are a primary cause

of local and regional extinctions⁴⁻⁶

Logging

can cause altered species composition, fragmentation and total clearance of mangrove forests

Agriculture

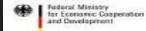
Conversion to rice paddies responsible for 88% of mangrove loss in Myanmar¹⁰

2

Aquaculture

causes more than half of mangrove losses globally, mostly due to shrimp culture⁹

Pollution


Mangrove's aerial roots, through which they obtain oxygen, can easily be smothered and clogged by sediment, solid waste and oil⁸

Coastal development

Urbanisation drives mangrove loss and degradation; human population density in coastal regions 3 times higher than global average⁷

The Commonwealth Blue Charter

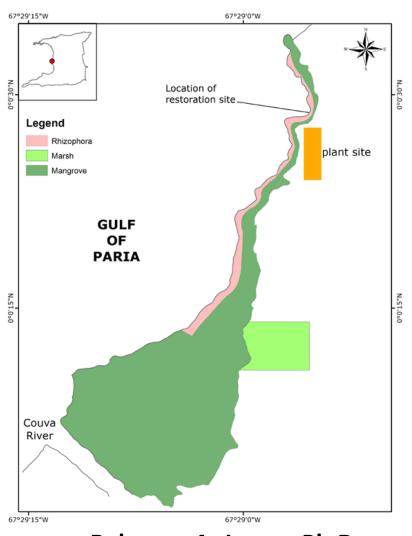
The Commonwealth Blue Charter is an agreement by all 54 Commonwealth countries to actively co-operate to:

- solve ocean-related problems; and,
- meet commitments for sustainable ocean development.

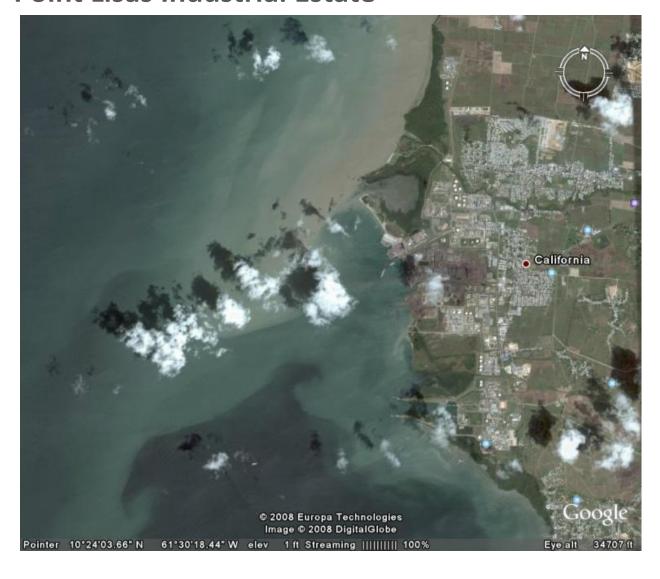
The process is effected through 10 Action Groups and Mangrove Ecosystems and Livelihoods is one of them, which is championed by Sri Lanka.

Mangrove Ecosystems and Livelihoods Action Group

- In the world, Sri Lanka is leading in mangrove conservation in many fronts – policy, restoration, community participation, etc.
- Current members of the Action Group are: Australia, Bangladesh, Bahamas, Jamaica, Kenya, Nigeria, Pakistan, Sri Lanka, Trinidad and Tobago, the United Kingdom and Vanuatu.
- Sri Lanka hosted the first meeting of Action Group in October 2019.
- Going forward, MELAG continues to share best practices, working on further analyzing mangrove policy and practices in member countries, identifying and initiating processes for capacity building related issues, while ways and means for regional collaborations and on-ground support for conservation and restoration are also being considered, amidst COVID-19 pandemic.


"If there are no mangroves, then the sea will have no meaning. It's like a tree with no roots, for the mangroves are the roots of the sea!"

Mad-Ha Ranwasii, a Thai fisherman & village headman, 1992.



TRINIDAD AND TOBAGO CASE STUDY: RESTORATION OF A MANGROVE SYSTEM IN POINT LISAS

Rahanna A. Juman Ph.D
Institute of Marine Affairs, Trinidad and Tobago

Point Lisas Industrial Estate

In 1979, 500 ha of mangrove from the Couva –Claxton systems were cleared for development of the Point Lisas Industrial Estate

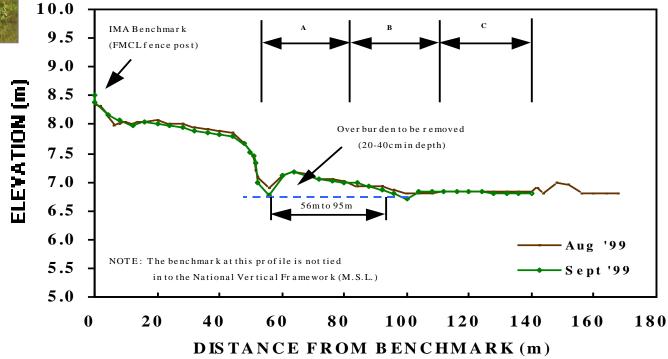
In 1997, an ammonia plant cleared mangrove to pass an effluent pipeline to the sea

Objectives:

Determine why
 natural regeneration
 of mangrove in this
 area did not occur

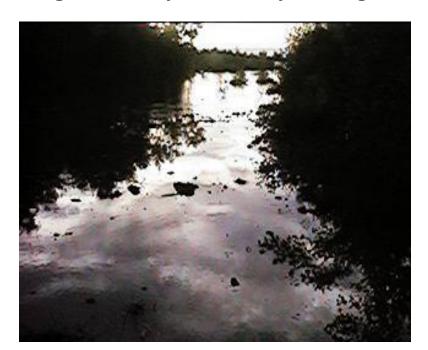
2. Prepare site and replant mangrove seedlings in the area

Wetland area to be restored (approx. 1200m²) prior to preparation and replanting


APPROACH TO PROJECT:

Profile data being collected in area to be restored

North Couva River Mangrove System - Profile along cleared site, showing areas to be replanted prior to preparation.


A - large saplings, B - black seedlings, C - red seedlings.

Excavation work being carried out in landward area

Restoration site flooded at high tide after being leveled, prior to replanting

Mangrove planting

170 red, 76 black and 15 white mangroves were replanted

Species composition 10 months after replanting

Species	# Planted	# Survived	# Natural Colonizers
Red mangrove	170	10	
Black mangrove	76	45	169
White mangrove	15	10	120

REPLANTED AREA 10 MONTHS AFTER (AUGUST 2000)

BY 2006
DENSITY 13 TREES/ 0.01 HA,

AVE HEIGHT=9.9 M ±1.9,

AVE DBH =11.71±5.9 CM

IMPLICATION FOR MANGROVE RESTORATION EFFORT

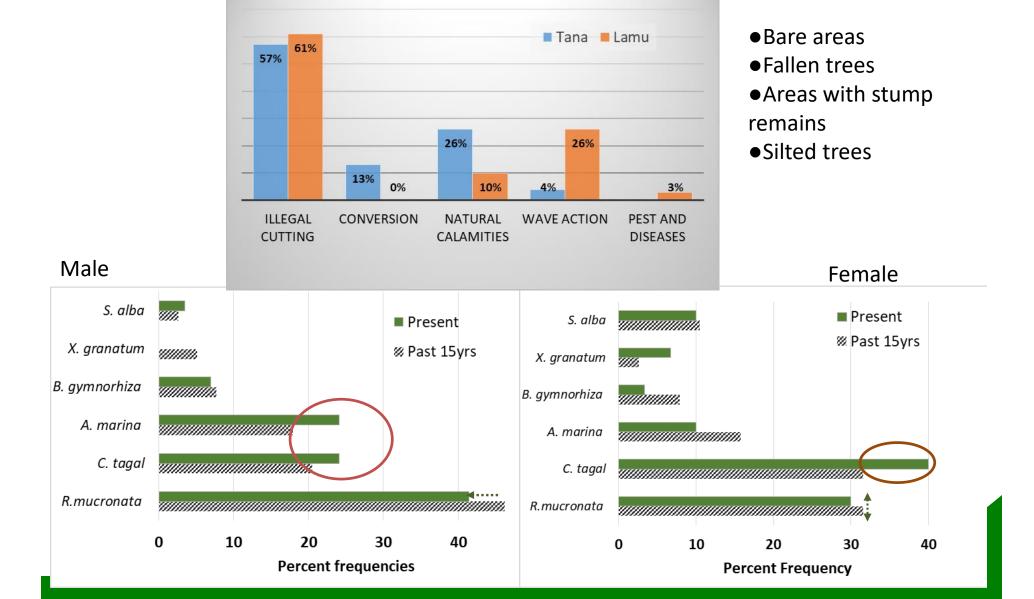
- •Determine cause of die-off; whether chronic or acute
- Determine why natural regeneration has not occurred
- •Determine whether the physical characteristics of the sites has been altered
- •Restore the physical environment tidal hydrology
- Natural colonization will occur once there is a source of seedlings in the area
- Mangrove planting should be the final option

Race to save the once little known swimming tidal forests

Dr. Judith Okello KMFRI-Mombasa


Unlocking the wealth of mangrove ecosystems

Commonwealth Blue Charter webinar


Mangroves threatened yet critical

Ecological settings of degraded mangrove sites

- > KII, FGD: 30 villages- proximity to mangrove area
 - what sites the locals consider as degraded; temporal variations in species composition, utilization patterns,
- ➤ Systematic sampling in perceived degraded areas (satellite imagery and community)
 - Structure; include species in adjacent area
 - Densities of stumps, fallen and standing dead trees, and the regeneration status.
 - Environmental variables: salinity range, redox potential, inundation frequency
- ➤ Mangrove cover change analysis 2010 to 2019

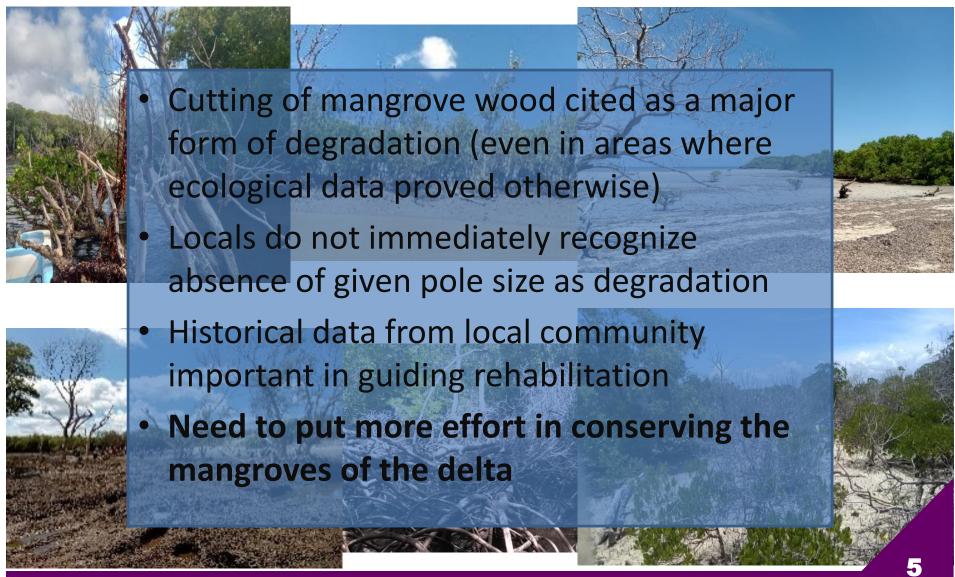
Degradation from the local's perspective

Ecological characteristics

Natural regeneration > 2,500/ha (FAO, 1994)

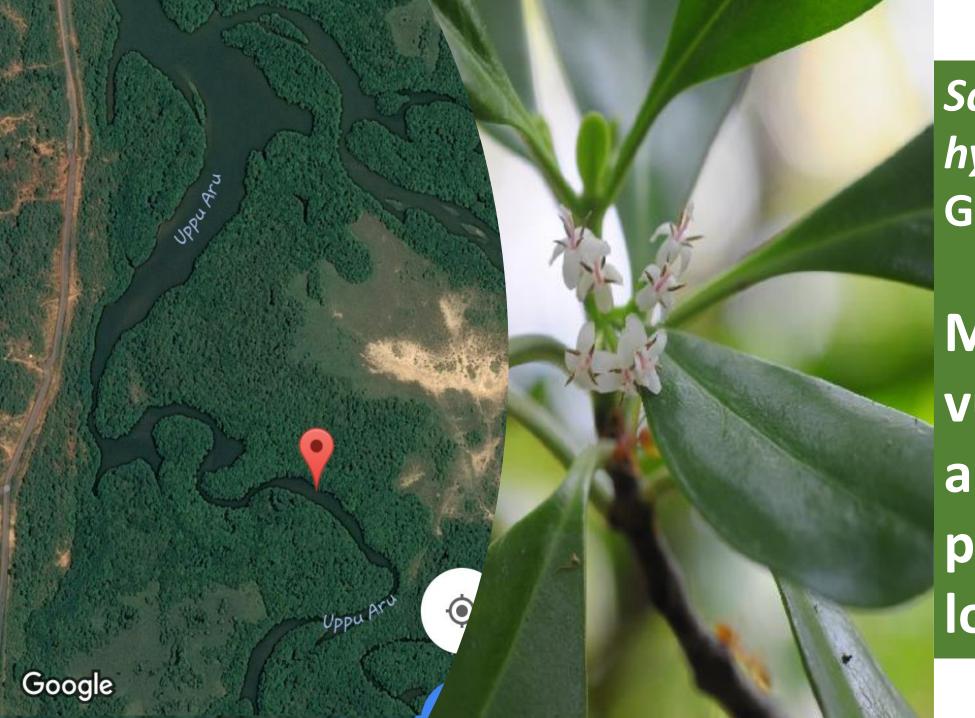
	Density (counts/ha)					
Area	Stumps	Dieback	Fallen dead	Standing dead	Natural regeneration	
Kiunga (Protected)	58.9	55.2	28.6	114.6	5068.9	
Pate	1918.5	0.0	0.0	4.3	10950.0	
Lower Tana Delta	933.9	208.9	37.5	132.1	904.2	

- Kiunga- standing dead
- Pate almost purely overexploitation
- Lower Tana Delta- Integrated causes


Mean=127 counts/ha

Mean=67 counts/ha

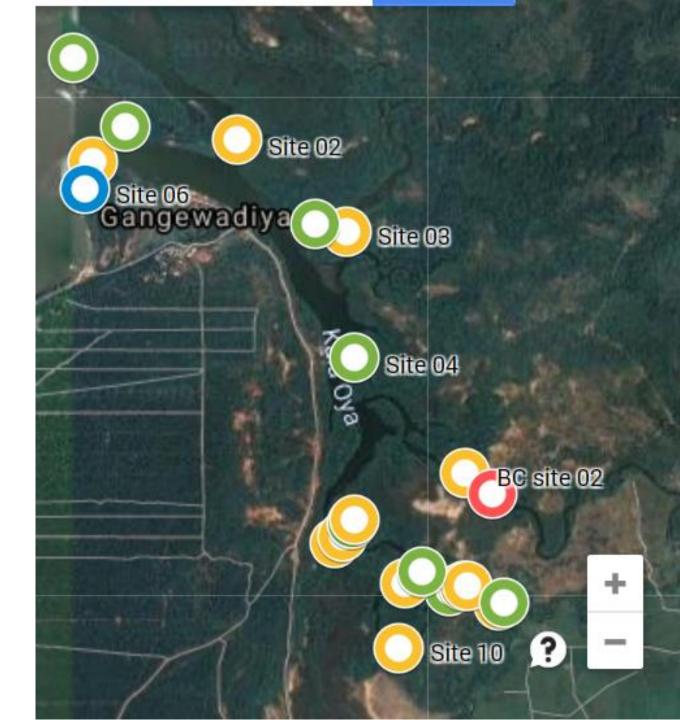
Conclusion



Mangroves everywhere: No two stands similar

Achini Wathsala Fernando

	Species	IUCN Red List 2012
1	Species 32	LC
2	η_{ab}	NT
3	Lumnitzer 8701	NT
4	Excoecaria agalloci. P 2.50	LC
5	Pemphis acidula Forst.	NT
6	Xylocarpus granatum (19765 in	EN
7	Bruguiera cylindrica (L.) Blume	EN
8	Bruguiera gymnorrhiza (L.) Lamk.	VU
9	Ceriops tagal (Perr.) C.B. Robinson	NT
10	Rhizophora apiculata BL	dr the NT
11	Rhizophora mucronata Lamk.	inegto
12	Scyphiphora hydrophyllacea Gaertn.f.	rened
13	Aegiceras corniculatum (L.) Blanco	LC
14	Sonneratia alba J. Smith	EN



Scyphiphora hydrophyllacea Gaertn.f.

Mapping of vulnerable and their point locations

Shannon Weinner Index of Species Diversity

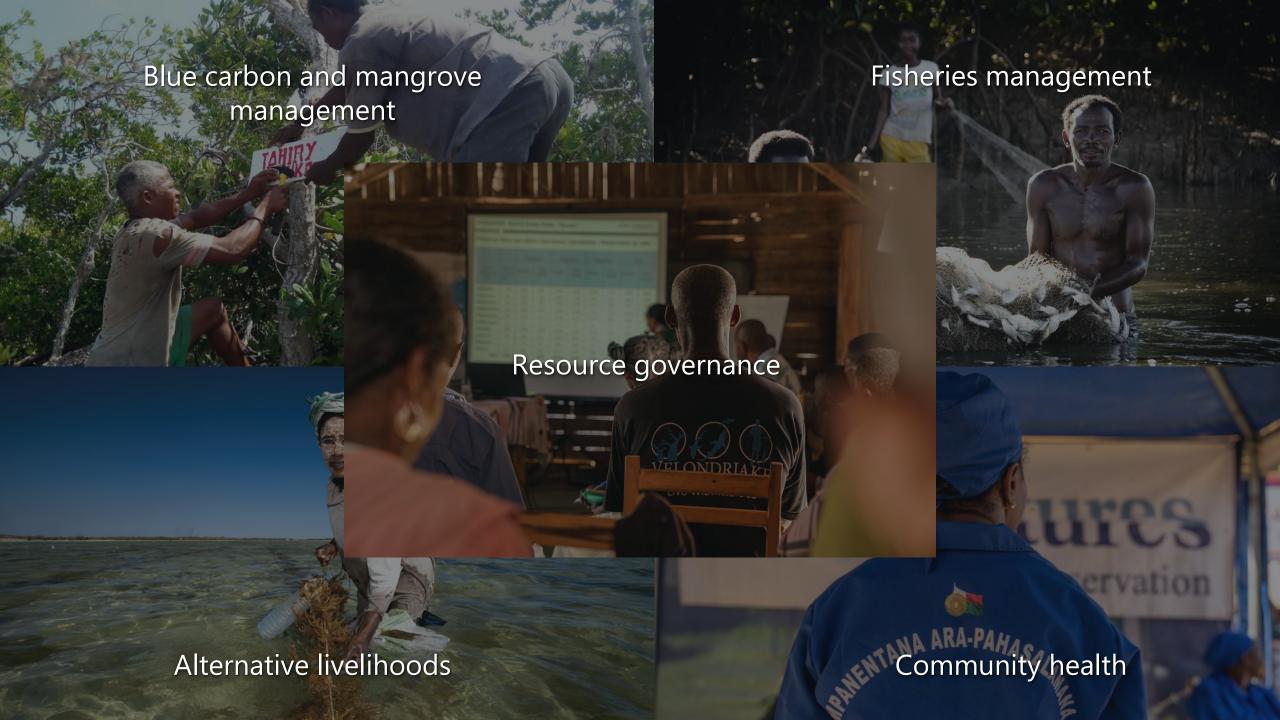
Value	Color Code
0.0000-0.5000	
0.5100-1.0000	
1.1000-1.5000	
1.5100-2.0000	
2.1000-2.5000	
2.5100-3.0000	

Importance of data for evidence-based management

- Data revealed within estuary species distributions
- Helped in identifying areas that harbour vulnerable species
- Established the status of underlying threats to ecosystem
- Enabled developing mangrove ecosystem based eco-tourism plan

• Forms the baseline for future monitoring of this ecosystem

Destruction of mangroves for aquaculture, agriculture, timber and charcoal


Lack of property rights for communities = no incentive for sustainable management

Few viable alternative livelihoods
= communities are forced to harvest natural
resources

Mangroves and their ecosystem services are undervalued = lack of funding for mangrove management

Ineffectual forest governance
= communities have no control over their
forests

Commonwealth Blue Charter webinar: Unlocking the wealth of mangrove ecosystems

27 July 2020

