Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Volcanic trigger of ocean deoxygenation during Cordilleran ice sheet retreat

Abstract

North Pacific deoxygenation events during the last deglaciation were sustained over millennia by high export productivity, but the triggering mechanisms and their links to deglacial warming remain uncertain1,2,3. Here we find that initial deoxygenation in the North Pacific immediately after the Cordilleran ice sheet (CIS) retreat4 was associated with increased volcanic ash in seafloor sediments. Timing of volcanic inputs relative to CIS retreat suggests that regional explosive volcanism was initiated by ice unloading5,6. We posit that iron fertilization by volcanic ash7,8,9 during CIS retreat fuelled ocean productivity in this otherwise iron-limited region, and tipped the marine system towards sustained deoxygenation. We also identify older deoxygenation events linked to CIS retreat over the past approximately 50,000 years (ref. 4). Our findings suggest that the apparent coupling between the atmosphere, ocean, cryosphere and solid-Earth systems occurs on relatively short timescales and can act as an important driver for ocean biogeochemical change.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Geology and oceanography background.
Fig. 2: Records of deglacial deoxygenation in the Northeast Pacific.
Fig. 3: Records of deglacial volcanism and ice sheet retreat on the Northeast Pacific margin.
Fig. 4: Proposed links between ice sheet retreat, volcanism and deoxygenation in the Northeast Pacific.
Fig. 5: Records of ice sheet retreat and deoxygenation on the Northeast Pacific margin in the past 50 kyr.

Similar content being viewed by others

Data availability

The geochemical datasets generated by this study and the data compilations are publicly available at Zenodo (https://doi.org/10.5281/zenodo.6770650) and Pangea (https://doi.org/10.1594/PANGAEA.947051https://doi.org/10.1594/PANGAEA.947052). Source data are provided with this paper.

Code availability

Computer codes used in the study are publicly available (https://doi.org/10.5281/zenodo.6770650).

References

  1. Praetorius, S. K. et al. North Pacific deglacial hypoxic events linked to abrupt ocean warming. Nature 527, 362–366 (2015).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  2. Crusius, J., Pedersen, T. F., Kienast, S., Keigwin, L. & Labeyrie, L. Influence of northwest Pacific productivity on North Pacific Intermediate Water oxygen concentrations during the Bølling-Ållerød interval (14.7–12.9 ka). Geology 32, 633–636 (2004).

    Article  ADS  CAS  Google Scholar 

  3. Davies, M. H. et al. The deglacial transition on the southeastern Alaska Margin: meltwater input, sea level rise, marine productivity, and sedimentary anoxia. Paleoceanography 26, PA2223 (2011).

    Article  ADS  Google Scholar 

  4. Walczak, M. H. et al. Phasing of millennial-scale climate variability in the Pacific and Atlantic Oceans. Science 370, 716–720 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Huybers, P. & Langmuir, C. Feedback between deglaciation, volcanism, and atmospheric CO2. Earth Planet. Sci. Lett. 286, 479–491 (2009).

    Article  ADS  CAS  Google Scholar 

  6. Praetorius, S. et al. Interaction between climate, volcanism, and isostatic rebound in Southeast Alaska during the last deglaciation. Earth Planet. Sci. Lett. 452, 79–89 (2016).

    Article  ADS  CAS  Google Scholar 

  7. Hamme, R. C. Volcanic ash fuels anomalous plankton bloom in subarctic northeast Pacific. Geophys. Res. Lett. 37, L19604 (2010).

    Article  ADS  Google Scholar 

  8. Browning, T. J. et al. Strong responses of Southern Ocean phytoplankton communities to volcanic ash. Geophys. Res. Lett. 41, 2014GL059364 (2014).

    Article  Google Scholar 

  9. Olgun, N. Surface ocean iron fertilization: the role of airborne volcanic ash from subduction zone and hot spot volcanoes and related iron fluxes into the Pacific Ocean. Glob. Biogeochem. Cycles 25, GB4001 (2011).

    Article  ADS  Google Scholar 

  10. Schmidtko, S., Stramma, L. & Visbeck, M. Decline in global oceanic oxygen content during the past five decades. Nature 542, 335–339 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Levin, L. A. Manifestation, drivers, and emergence of open ocean deoxygenation. Annu. Rev. Mar. Sci. 10, 229–260 (2018).

    Article  ADS  Google Scholar 

  12. Belanger, C. L., Sharon, Du, J., Payne, C. R. & Mix, A. C. North Pacific deep-sea ecosystem responses reflect post-glacial switch to pulsed export productivity, deoxygenation, and destratification. Deep Sea Res. Part I Oceanogr. Res. Pap. 164, 103341 (2020).

    Article  CAS  Google Scholar 

  13. Hendy, I. L. & Pedersen, T. F. Is pore water oxygen content decoupled from productivity on the California Margin? Trace element results from Ocean Drilling Program Hole 1017E, San Lucia slope, California. Paleoceanography 20, PA4026 (2005).

    Article  ADS  Google Scholar 

  14. Lam, P. J. et al. Transient stratification as the cause of the North Pacific productivity spike during deglaciation. Nat. Geosci. 6, 622–626 (2013).

    Article  ADS  CAS  Google Scholar 

  15. Schmittner, A., Galbraith, E. D., Hostetler, S. W., Pedersen, T. F. & Zhang, R. Large fluctuations of dissolved oxygen in the Indian and Pacific oceans during Dansgaard-Oeschger oscillations caused by variations of North Atlantic Deep Water subduction. Paleoceanography 22, PA3207 (2007).

    Article  ADS  Google Scholar 

  16. Du, J., Haley, B. A., Mix, A. C., Walczak, M. H. & Praetorius, S. K. Flushing of the deep Pacific Ocean and the deglacial rise of atmospheric CO2 concentrations. Nat. Geosci. 11, 749–755 (2018).

    Article  ADS  CAS  Google Scholar 

  17. Davies-Walczak, M. et al. Late Glacial to Holocene radiocarbon constraints on North Pacific Intermediate Water ventilation and deglacial atmospheric CO2 sources. Earth Planet. Sci. Lett. 397, 57–66 (2014).

    Article  ADS  CAS  Google Scholar 

  18. Mix, A. C. et al. in Mechanisms of Global Climate Change at Millennial Time Scales (eds Clark, P. U., Webb, R. S. & Keigwin, L. D.) 127–148 (American Geophysical Union, 1999).

  19. Romero, O. E., LeVay, L. J., McClymont, E. L., Müller, J. & Cowan, E. A. Orbital and suborbital-scale variations of productivity and sea surface conditions in the Gulf of Alaska during the past 54,000 years: impact of iron fertilization by icebergs and meltwater. Paleoceanogr. Paleoclimatol. 37, e2021PA004385 (2022).

    Article  ADS  Google Scholar 

  20. Velle, J. H. et al. High resolution inclination records from the Gulf of Alaska, IODP Expedition 341 Sites U1418 and U1419. Geophys. J. Int. 229, 345–358 (2022).

    Article  ADS  CAS  Google Scholar 

  21. Heaton, T. J. et al. Marine20—the marine radiocarbon age calibration curve (0–55,000 cal BP). Radiocarbon 62, 779–820 (2020).

    Article  CAS  Google Scholar 

  22. Morford, J. L. & Emerson, S. The geochemistry of redox sensitive trace metals in sediments. Geochim. Cosmochim. Acta 63, 1735–1750 (1999).

    Article  ADS  CAS  Google Scholar 

  23. Sharon, Belanger, C., Du, J. & Mix, A. Reconstructing paleo-oxygenation for the last 54,000 years in the Gulf of Alaska using cross-validated benthic foraminiferal and geochemical records. Paleoceanogr. Paleoclimatol. 36, e2020PA003986 (2021).

    ADS  Google Scholar 

  24. Scudder, R. P. Geochemical approaches to the quantification of dispersed volcanic ash in marine sediment. Prog. Earth Planet. Sci. 3, 1 (2016).

    Article  Google Scholar 

  25. Roy, K. & Peltier, W. R. Relative sea level in the Western Mediterranean basin: a regional test of the ICE-7G_NA (VM7) model and a constraint on late Holocene Antarctic deglaciation. Quat. Sci. Rev. 183, 76–87 (2018).

    Article  ADS  Google Scholar 

  26. Lambeck, K., Purcell, A. & Zhao, S. The North American Late Wisconsin ice sheet and mantle viscosity from glacial rebound analyses. Quat. Sci. Rev. 158, 172–210 (2017).

    Article  ADS  Google Scholar 

  27. Seguinot, J., Rogozhina, I., Stroeven, A. P., Margold, M. & Kleman, J. Numerical simulations of the Cordilleran ice sheet through the last glacial cycle. Cryosphere 10, 639–664 (2016).

    Article  ADS  Google Scholar 

  28. Addison, J. A. et al. Productivity and sedimentary δ15N variability for the last 17,000 years along the northern Gulf of Alaska continental slope. Paleoceanography 27, PA1206 (2012).

    Article  ADS  Google Scholar 

  29. Praetorius, S. K. et al. The role of Northeast Pacific meltwater events in deglacial climate change. Sci. Adv. 6, eaay2915 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Weingartner, T. J., Danielson, S. L. & Royer, T. C. Freshwater variability and predictability in the Alaska Coastal Current. Deep Sea Res. Part II Top. Stud. Oceanogr. 52, 169–191 (2005).

    Article  ADS  Google Scholar 

  31. Shugar, D. H. et al. Post-glacial sea-level change along the Pacific coast of North America. Quat. Sci. Rev. 97, 170–192 (2014).

    Article  ADS  Google Scholar 

  32. Ng, H. C. et al. Coherent deglacial changes in western Atlantic Ocean circulation. Nat. Commun. 9, 2947 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  33. Serno, S. et al. Eolian dust input to the Subarctic North Pacific. Earth Planet. Sci. Lett. 387, 252–263 (2014).

    Article  ADS  CAS  Google Scholar 

  34. Du, J., Haley, B. A. & Mix, A. C. Neodymium isotopes in authigenic phases, bottom waters and detrital sediments in the Gulf of Alaska and their implications for paleo-circulation reconstruction. Geochim. Cosmochim. Acta 193, 14–35 (2016).

    Article  ADS  CAS  Google Scholar 

  35. Farmer, G. L., Ayuso, R. & Plafker, G. A Coast Mountains provenance for the Valdez and Orca groups, southern Alaska, based on Nd, Sr, and Pb isotopic evidence. Earth Planet. Sci. Lett. 116, 9–21 (1993).

    Article  ADS  CAS  Google Scholar 

  36. Preece, S. J., Westgate, J. A., Stemper, B. A. & Péwé, T. L. Tephrochronology of late Cenozoic loess at Fairbanks, central Alaska. GSA Bull. 111, 71–90 (1999).

    Article  CAS  Google Scholar 

  37. Jickells, T. D. et al. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308, 67–71 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Wilson, A. M. & Russell, J. K. Glacial pumping of a magma-charged lithosphere: a model for glaciovolcanic causality in magmatic arcs. Earth Planet. Sci. Lett. 548, 116500 (2020).

    Article  CAS  Google Scholar 

  39. Lesnek, A. J., Briner, J. P., Lindqvist, C., Baichtal, J. F. & Heaton, T. H. Deglaciation of the Pacific coastal corridor directly preceded the human colonization of the Americas. Sci. Adv. 4, eaar5040 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  40. Tulenko, J. P., Briner, J. P., Young, N. E. & Schaefer, J. M. The last deglaciation of Alaska and a new benchmark 10Be moraine chronology from the western Alaska Range. Quat. Sci. Rev. 287, 107549 (2022).

    Article  Google Scholar 

  41. Dalton, A. S. et al. An updated radiocarbon-based ice margin chronology for the last deglaciation of the North American Ice Sheet Complex. Quat. Sci. Rev. 234, 106223 (2020).

    Article  Google Scholar 

  42. Laskar, J. et al. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261–285 (2004).

    Article  ADS  Google Scholar 

  43. Muschitiello, F., Pausata, F. S. R., Lea, J. M., Mair, D. W. F. & Wohlfarth, B. Enhanced ice sheet melting driven by volcanic eruptions during the last deglaciation. Nat. Commun. 8, 1020 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  44. Walczak, M. H. et al. A 17,000 yr paleomagnetic secular variation record from the southeast Alaskan margin: regional and global correlations. Earth Planet. Sci. Lett. 473, 177–189 (2017).

    Article  ADS  CAS  Google Scholar 

  45. Nishioka, J. et al. Subpolar marginal seas fuel the North Pacific through the intermediate water at the termination of the global ocean circulation. Proc. Natl Acad. Sci. 117, 12665–12673 (2020).

    Article  ADS  CAS  Google Scholar 

  46. Jaccard, S. L. & Galbraith, E. D. Large climate-driven changes of oceanic oxygen concentrations during the last deglaciation. Nat. Geosci. 5, 151–156 (2012).

    Article  ADS  CAS  Google Scholar 

  47. Ciracì, E., Velicogna, I. & Swenson, S. Continuity of the mass loss of the world’s glaciers and ice caps from the GRACE and GRACE Follow-On Missions. Geophys. Res. Lett. 47, e2019GL086926 (2020).

    Article  ADS  Google Scholar 

  48. ETOPO1 1 arc-minute global relief model (National Geophysical Data Center, 2009); https://doi.org/10.7289/V5C8276M.

  49. Boyer, T. P. et al. World Ocean Database 2018 (Technical ed. Mishonov, A. V.) NOAA Atlas NESDIS 87 (2018).

  50. Global Volcanism Program, 2013. Volcanoes of the World, v. 4.8.7 (12 March 2020). Venzke, E. (ed.). Smithsonian Institution. https://doi.org/10.5479/si.GVP.VOTW4-2013 (2013).

  51. Veres, D. et al. The Antarctic ice core chronology (AICC2012): an optimized multi-parameter and multi-site dating approach for the last 120 thousand years. Clim. Past 9, 1733–1748 (2013).

    Article  Google Scholar 

  52. Martin, J. H., Gordon, R. M., Fitzwater, S. & Broenkow, W. W. VERTEX: phytoplankton/iron studies in the Gulf of Alaska. Deep Sea Res. Part A Oceanogr. Res. Pap. 36, 649–680 (1989).

    Article  ADS  CAS  Google Scholar 

  53. Lippiatt, S. M., Lohan, M. C. & Bruland, K. W. The distribution of reactive iron in northern Gulf of Alaska coastal waters. Mar. Chem. 121, 187–199 (2010).

    Article  CAS  Google Scholar 

  54. Aguilar-Islas, A. M. et al. Temporal variability of reactive iron over the Gulf of Alaska shelf. Deep Sea Res. Part II Top. Stud. Oceanogr. 132, 90–106 (2016).

    Article  ADS  CAS  Google Scholar 

  55. Crusius, J., Schroth, A. W., Resing, J. A., Cullen, J. & Campbell, R. W. Seasonal and spatial variabilities in northern Gulf of Alaska surface water iron concentrations driven by shelf sediment resuspension, glacial meltwater, a Yakutat eddy, and dust. Glob. Biogeochem. Cycles 31, 942–960 (2017).

    Article  ADS  CAS  Google Scholar 

  56. Wu, J. et al. Size-fractionated iron distribution on the northern Gulf of Alaska. Geophys. Res. Lett. 36, L11606 (2009).

    Article  ADS  Google Scholar 

  57. Brown, M. T., Lippiatt, S. M., Lohan, M. C. & Bruland, K. W. Trace metal distributions within a Sitka eddy in the northern Gulf of Alaska. Limnol. Oceanogr. 57, 503–518 (2012).

    Article  ADS  CAS  Google Scholar 

  58. Lam, P. J. et al. Wintertime phytoplankton bloom in the subarctic Pacific supported by continental margin iron. Glob. Biogeochem. Cycles 20, GB1006 (2006).

    Article  ADS  Google Scholar 

  59. Brown, M. T., Lippiatt, S. M. & Bruland, K. W. Dissolved aluminum, particulate aluminum, and silicic acid in northern Gulf of Alaska coastal waters: glacial/riverine inputs and extreme reactivity. Mar. Chem. 122, 160–175 (2010).

    Article  CAS  Google Scholar 

  60. Crusius, J. Dissolved Fe supply to the central Gulf of Alaska is inferred to be derived from Alaskan glacial dust that is not resolved by dust transport models. J. Geophys. Res. Biogeosci. 126, e2021JG006323 (2021).

    Article  ADS  Google Scholar 

  61. Duggen, S., Croot, P., Schach, U. & Hoffmann, L. Subduction zone volcanic ash can fertilize the surface ocean and stimulate phytoplankton growth: evidence from biogeochemical experiments and satellite data. Geophys. Res. Lett. 34, L01612 (2007).

    Article  ADS  Google Scholar 

  62. Haslett, J. & Parnell, A. A simple monotone process with application to radiocarbon-dated depth chronologies. J. R. Stat. Soc. Ser. C Appl. Stat. 57, 399–418 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  63. Muratli, J. M., McManus, J., Mix, A. & Chase, Z. Dissolution of fluoride complexes following microwave-assisted hydrofluoric acid digestion of marine sediments. Talanta 89, 195–200 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Crusius, J. & Thomson, J. Comparative behavior of authigenic Re, U, and Mo during reoxidation and subsequent long-term burial in marine sediments. Geochim. Cosmochim. Acta 64, 2233–2242 (2000).

    Article  ADS  CAS  Google Scholar 

  65. Crusius, J., Calvert, S., Pedersen, T. & Sage, D. Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition. Earth Planet. Sci. Lett. 145, 65–78 (1996).

    Article  ADS  CAS  Google Scholar 

  66. Tierney, J. E. & Tingley, M. P. BAYSPLINE: a new calibration for the alkenone paleothermometer. Paleoceanogr. Paleoclimatol. 33, 281–301 (2018).

    Article  ADS  Google Scholar 

  67. Serno, S. et al. Using the natural spatial pattern of marine productivity in the Subarctic North Pacific to evaluate paleoproductivity proxies. Paleoceanography 29, 2013PA002594 (2014).

    Article  Google Scholar 

  68. Lopes, C., Kucera, M. & Mix, A. C. Climate change decouples oceanic primary and export productivity and organic carbon burial. Proc. Natl Acad. Sci. 112, 332–335 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  69. Payne, C. R. & Belanger, C. L. Enhanced carbonate dissolution associated with deglacial dysoxic events in the subpolar North Pacific. Paleoceanogr. Paleoclimatol. 36, e2020PA004206 (2021).

    Article  ADS  Google Scholar 

  70. Rushdi, A. I., McManus, J. & Collier, R. W. Marine barite and celestite saturation in seawater. Mar. Chem. 69, 19–31 (2000).

    Article  CAS  Google Scholar 

  71. McManus, J. et al. Geochemistry of barium in marine sediments: implications for its use as a paleoproxy. Geochim. Cosmochim. Acta 62, 3453–3473 (1998).

    Article  ADS  CAS  Google Scholar 

  72. Dymond, J., Suess, E. & Lyle, M. Barium in deep-sea sediment: a geochemical proxy for paleoproductivity. Paleoceanography 7, 163–181 (1992).

    Article  ADS  Google Scholar 

  73. Seidenkrantz, M.-S. Benthic foraminifera as palaeo sea-ice indicators in the subarctic realm – examples from the Labrador Sea–Baffin Bay region. Quat. Sci. Rev. 79, 135–144 (2013).

    Article  ADS  Google Scholar 

  74. Fontanier, C. et al. Living (stained) deep-sea foraminifera off Hachinohe (NE Japan, Western Pacific): environmental interplay in oxygen-depleted ecosystems. J. Foraminifer. Res. 44, 281–299 (2014).

    Article  Google Scholar 

  75. Lê, S., Josse, J. & Husson, F. FactoMineR: an R package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).

    Article  Google Scholar 

  76. Josse, J. & Husson, F. missMDA: a package for handling missing values in multivariate data analysis. J. Stat. Softw. 70, 1–31 (2016).

    Article  Google Scholar 

  77. Cameron, C. E., Mulliken, K. M., Crass, S. W., Schaefer, J. R. & Wallace, K. L. Alaska Volcano Observatory geochemical database, version 2 (Alaska Division of Geological & Geophysical Surveys, 2019); https://doi.org/10.14509/30058

  78. GEOROC Compilation: Intraplate Volcanic Rocks (DIGIS, 2022); https://doi.org/10.25625/RZZ9VM.

  79. Templ, M., Filzmoser, P. & Reimann, C. Cluster analysis applied to regional geochemical data: problems and possibilities. Appl. Geochem. 23, 2198–2213 (2008).

    Article  ADS  CAS  Google Scholar 

  80. Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G. & Barceló-Vidal, C. Isometric logratio transformations for compositional data analysis. Math. Geol. 35, 279–300 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  81. Preece, S. J., Westgate, J. A., Froese, D. G., Pearce, N. J. G. & Perkins, W. T. A catalogue of late Cenozoic tephra beds in the Klondike goldfields and adjacent areas, Yukon Territory. Can. J. Earth Sci. 48, 1386–1418 (2011).

    Article  ADS  CAS  Google Scholar 

  82. Westgate, J. A., Perkins, W. T., Fuge, R., Pearce, N. J. G. & Wintle, A. G. Trace-element analysis of volcanic glass shards by laser ablation inductively coupled plasma mass spectrometry: application to tephrochronological studies. Appl. Geochem. 9, 323–335 (1994).

    Article  ADS  CAS  Google Scholar 

  83. Wilcox, P. S. et al. A new set of basaltic tephras from Southeast Alaska represent key stratigraphic markers for the late Pleistocene. Quat. Res. 92, 246–256 (2019).

    Article  Google Scholar 

  84. Edwards, B. R. & Russell, J. K. Northern Cordilleran volcanic province: a northern Basin and Range? Geology 27, 243–246 (1999).

    Article  ADS  Google Scholar 

  85. Huber, B., Bahlburg, H., Berndt, J., Dunkl, I. & Gerdes, A. Provenance of the Surveyor Fan and precursor sediments in the Gulf of Alaska—implications of a combined U-Pb, (U-Th)/He, Hf, and rare earth element study of detrital zircons. J. Geol. 126, 577–600 (2018).

    Article  ADS  CAS  Google Scholar 

  86. Dunn, C. A., Enkelmann, E., Ridgway, K. D. & Allen, W. K. Source to sink evaluation of sediment routing in the Gulf of Alaska and Southeast Alaska: a thermochronometric perspective. J. Geophys. Res. Earth Surf. 122, 711–734 (2017).

    Article  ADS  Google Scholar 

  87. Bootes, N., Enkelmann, E. & Lease, R. Late Miocene to Pleistocene source to sink record of exhumation and sediment routing in the Gulf of Alaska from detrital zircon fission-track and U-Pb double dating. Tectonics 38, 2703–2726 (2019).

    Article  ADS  Google Scholar 

  88. Huber, B., Bahlburg, H. & Pfänder, J. A. Single grain heavy mineral provenance of garnet and amphibole in the Surveyor fan and precursor sediments on the Gulf of Alaska abyssal plain — implications for climate-tectonic interactions in the St. Elias orogen. Sediment. Geol. 372, 173–192 (2018).

    Article  ADS  CAS  Google Scholar 

  89. Plafker, G., Moore, J. C. & Winkler, G. R. in The Geology of Alaska (eds Plafker, G. & Berg, H. C.) 389–448 (Geological Society of America, 1994).

  90. Harris, N. R., Sisson, V. B., Wright, J. E. & Pavlis, T. L. Evidence for Eocene mafic underplating during fore-arc intrusive activity, eastern Chugach Mountains, Alaska. Geology 24, 263–266 (1996).

    Article  ADS  Google Scholar 

  91. Sisson, V. B. et al. in Geology of a Transpressional Orogen Developed During Ridge-Trench Interaction Along the North Pacific Margin (eds. Sisson, V. B., Roeske, S. M. & Pavlis, T. L.) 293–326 (Geological Society of America, 2003).

  92. Plafker, G., Nokleberg, W. J. & Lull, J. S. Bedrock geology and tectonic evolution of the Wrangellia, Peninsular, and Chugach Terranes along the Trans-Alaska Crustal Transect in the Chugach Mountains and Southern Copper River Basin, Alaska. J. Geophys. Res. Solid Earth 94, 4255–4295 (1989).

    Article  CAS  Google Scholar 

  93. Polat, A. et al. Lithological, structural, and geochemical characteristics of the Mesoarchean Târtoq greenstone belt, southern West Greenland, and the Chugach – Prince William accretionary complex, southern Alaska: evidence for uniformitarian plate-tectonic processes. Can. J. Earth Sci. 53, 1336–1371 (2016).

    Article  ADS  Google Scholar 

  94. Lull, J. S., Plafker, G., Dover, J. H. & Galloway, J. P. Geochemistry and paleotectonic implications of metabasaltic rocks in the Valdez Group, southern Alaska. US Geol. Surv. Bull. 1946, 29–38 (1990).

    Google Scholar 

  95. Barker, F., Farmer, G. L., Ayuso, R. A., Plafker, G. & Lull, J. S. The 50 Ma granodiorite of the eastern Gulf of Alaska: melting in an accretionary prism in the forearc. J. Geophys. Res. Solid Earth 97, 6757–6778 (1992).

    Article  CAS  Google Scholar 

  96. Bruand, E., Gasser, D., Bonnand, P. & Stuewe, K. The petrology and geochemistry of a metabasite belt along the southern margin of Alaska. Lithos 127, 282–297 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  97. Walinsky, S. E. et al. Distribution and composition of organic matter in surface sediments of coastal Southeast Alaska. Cont. Shelf Res. 29, 1565–1579 (2009).

    Article  ADS  Google Scholar 

  98. Haskell, K. H. & Hanson, R. J. An algorithm for linear least squares problems with equality and nonnegativity constraints. Math. Program. 21, 98–118 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  99. Bolton, M. S. M. et al. Machine learning classifiers for attributing tephra to source volcanoes: an evaluation of methods for Alaska tephras. J. Quat. Sci. 35, 81–92 (2020).

    Article  Google Scholar 

  100. Bryson, R. U., Bryson, R. A. & Ruter, A. A calibrated radiocarbon database of late Quaternary volcanic eruptions. eEarth Discuss. 1, 123–134 (2006).

    Article  ADS  Google Scholar 

  101. Watt, S. F. L., Pyle, D. M. & Mather, T. A. The volcanic response to deglaciation: evidence from glaciated arcs and a reassessment of global eruption records. Earth Sci. Rev. 122, 77–102 (2013).

    Article  ADS  Google Scholar 

  102. Crosweller, H. S. et al. Global database on large magnitude explosive volcanic eruptions (LaMEVE). J. Appl. Volcanol. 1, 4 (2012).

    Article  Google Scholar 

  103. Davies, L. J., Jensen, B. J. L., Froese, D. G. & Wallace, K. L. Late Pleistocene and Holocene tephrostratigraphy of interior Alaska and Yukon: key beds and chronologies over the past 30,000 years. Quat. Sci. Rev. 146, 28–53 (2016).

    Article  ADS  Google Scholar 

  104. Reimer, P. J. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020).

    Article  CAS  Google Scholar 

  105. Kalnay, E. et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77, 437–472 (1996).

    Article  ADS  Google Scholar 

  106. Lesnek, A. J., Briner, J. P., Baichtal, J. F. & Lyles, A. S. New constraints on the last deglaciation of the Cordilleran Ice Sheet in coastal Southeast Alaska. Quat. Res. 96, 140–160 (2020).

    Article  CAS  Google Scholar 

  107. Haeussler, P. J. et al. Late Quaternary deglaciation of Prince William Sound, Alaska. Quat. Res. 105, 115–135 (2022).

    Article  CAS  Google Scholar 

  108. Walcott, C. K., Briner, J. P., Baichtal, J. F., Lesnek, A. J. & Licciardi, J. M. Cosmogenic ages indicate no MIS 2 refugia in the Alexander Archipelago, Alaska. Geochronology 4, 191–211 (2022).

    Article  ADS  CAS  Google Scholar 

  109. Briner, J. P. et al. The last deglaciation of Alaska. Cuad. Investig. Geogr. 43, 429–448 (2017).

    Article  Google Scholar 

  110. Tulenko, J. P., Briner, J. P., Young, N. E. & Schaefer, J. M. Beryllium-10 chronology of early and late Wisconsinan moraines in the Revelation Mountains, Alaska: insights into the forcing of Wisconsinan glaciation in Beringia. Quat. Sci. Rev. 197, 129–141 (2018).

    Article  ADS  Google Scholar 

  111. Menounos, B. et al. Cordilleran Ice Sheet mass loss preceded climate reversals near the Pleistocene Termination. Science 358, 781–784 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  112. Dulfer, H. E., Margold, M., Engel, Z., Braucher, R. & Team, A. Using 10Be dating to determine when the Cordilleran Ice Sheet stopped flowing over the Canadian Rocky Mountains. Quat. Res. 102, 222–233 (2021).

    Article  Google Scholar 

  113. R Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2013).

  114. Seguinot, J. et al. Cordilleran ice sheet glacial cycle simulations continuous variables (Zenodo, 2020); https://doi.org/10.5281/zenodo.3606536

  115. Dansgaard, W. et al. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, 218–220 (1993).

    Article  ADS  Google Scholar 

  116. Andersen, K. K. et al. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431, 147–151 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  117. Jouzel, J. et al. Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317, 793–796 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  118. Petit, J. R. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436 (1999).

    Article  ADS  CAS  Google Scholar 

  119. Herbert, T. D. et al. Collapse of the California Current during glacial maxima linked to climate change on land. Science 293, 71–76 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  120. Behrenfeld, M. J. & Falkowski, P. G. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr. 42, 1–20 (1997).

    Article  ADS  CAS  Google Scholar 

  121. Roberts, M. V. The Temporal and Spatial Distribution of Dissolved and Particulate Iron Over the Gulf of Alaska Shelf. Thesis, Univ. Alaska Fairbanks (2018).

  122. Tagliabue, A. et al. A global compilation of dissolved iron measurements: focus on distributions and processes in the Southern Ocean. Biogeosciences 9, 2333–2349 (2012).

    Article  ADS  CAS  Google Scholar 

  123. GEOTRACES Intermediate Data Product Group. The GEOTRACES Intermediate Data Product 2021 (IDP2021) (NERC EDS British Oceanographic Data Centre NOC, 2021); https://www.bodc.ac.uk/data/published_data_library/catalogue/10.5285/cf2d9ba9-d51d-3b7c-e053-8486abc0f5fd/

  124. Hauri, C. et al. A regional hindcast model simulating ecosystem dynamics, inorganic carbon chemistry, and ocean acidification in the Gulf of Alaska. Biogeosciences 17, 3837–3857 (2020).

    Article  ADS  CAS  Google Scholar 

  125. Garcia, H. E. et al. World Ocean Atlas 2018. Vol. 4: Dissolved Inorganic Nutrients (Phosphate, Nitrate and Nitrate+Nitrite, Silicate) NOAA Atlas NESDIS 84 (Tech. ed. Mishonov, A.) (NOAA, 2019).

  126. Zweng, M. M. et al. World Ocean Atlas 2018. Vol. 2: Salinity NOAA Atlas NESDIS 82 (Technical ed. Mishonov, A.) (NOAA, 2019).

  127. Le Maitre, R. W. et al. Igneous Rocks: A Classification and Glossary of Terms. Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks (Cambridge Univ. Press, 2002).

  128. McDonough, W. F. & Sun, S.-S. The composition of the Earth. Chem. Geol. 120, 223–253 (1995).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Muratli for assistance in geochemical analysis at Oregon State University. Funding for this study was provided by US NSF award 1502754 to A.C.M. and 1801511 to C.L.B. J.D. was supported by the ETH Zurich Postdoctoral Fellowship 19-2 FEL-32. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement 891489. We thank the Oregon State University Marine and Geology Repository and the International Ocean Discovery Program for access to core materials.

Author information

Authors and Affiliations

Authors

Contributions

J.D. and A.C.M. designed this study. J.D. conducted the geochemical analysis and modelling, data compilation and synthesis and led the writing of the manuscript. A.C.M. assisted the overall conceptualization and interpretation of results and contributed substantially to the writing of the manuscript. B.A.H. assisted with the interpretation of geochemical data and writing of the manuscript. C.L.B. and Sharon helped with the faunal–trace metal data comparison and analysis.

Corresponding author

Correspondence to Jianghui Du.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Weiqi Yao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Modern biogeochemistry of the GOA.

a, Net primary production, based on the Vertically Generalized Production Model and the Moderate Resolution Imaging Spectroradiometer satellite results120, integrated over the euphotic zone and averaged over the spring and summer months (April to September) from 2002 to 2020. b, Surface water dissolved Fe concentrations, measured53,54,55,121,122,123 (triangles, averaged over 0–100 m) and from a high-resolution regional hind-cast model124 (background colour, averaged over 0–100 m and the spring and summer months from 1980 to 2013). The colour bar is in log scale. c, Surface NO3 climatology (μM, 1-degree grid) from the World Ocean Atlas 2018 (ref. 125), averaged over 0–100 m and the spring and summer months. d, Surface salinity climatology (0.25-degree grid) from the World Ocean Atlas 2018 (ref. 126), at 0 m and averaged over the summer months. The three black lines in ac are the isobaths of 300 m, indicating the depth of the shelf break; 680 m, the depth of site 85JC/U1419; and 3,680 m, the depth of site 87JC/U1418. The three black lines in d are the isohalines of 30, 31 and 32. The white arrow in d indicates the Alaska Coastal Current.

Extended Data Fig. 2 Bchron62 Bayesian age models.

af, Age model construction for the intermediate-depth site4,17. a, Radiocarbon dates (points) calibrated using the Marine20 curve21 and the modelled depth–age relationship (median line with 1σ range). b, Sedimentation rate (median line with 1σ range). c, The depth conversion used to align 85JC to U1419. d, The normalized and weighted RMSE of GRA and MS misfits as a function of the deviation from the depth conversion in c. e, Aligned magnetic susceptibility records. f, Aligned GRA density records. gk, Age model construction for the abyssal site20. Only MS was used for alignment in this case. g, Radiocarbon dates (points) calibrated using the Marine20 curve21 and the modelled depth–age relationship (median line with 1σ range). h, Sedimentation rate (median line with 1σ range). i, The depth conversion used to align 87JC to U1418. j, The normalized RMSE of MS misfit as a function of the deviation from the depth conversion in i. k, Aligned magnetic susceptibility records.

Source data

Extended Data Fig. 3 Geochemistry of the volcanic endmembers identified by cluster analysis.

a, Total alkali-silica diagram127. Each point represents a sample and the 1σ confidence ellipses of the clusters are shown. b, Chondrite128 normalized REE patterns. c, Primitive mantle128 normalized trace element patterns. The shaded intervals indicate the 1σ ranges (geometric mean and standard deviation) of the endmembers. d, Locations of volcanic samples. The location markers are jittered to reduce overlap on the plot. Unfilled circles indicate lava (whole rock) samples. Filled circles indicate tephra (volcanic glass) samples. The locations of the tephra samples are the locations at which they were deposited

Source data

Extended Data Fig. 4 Geochemistry of the potential terrigenous sediment endmembers compared with sediments at the intermediate-depth site.

ac, Bi-element plots showing the relationships between GOA Holocene and LGM (H&L) sediments and the terrigenous endmembers90,91,92,93,94,95,96. d, Aitchison distances among the GOA Holocene and LGM sediments, and between them and the terrigenous endmembers90,91,92,93,94,95,96. Distances are calculated for all possible sample pairs. The y-axis is sorted in the order of increasing median distance. The results are summarized using violin plots. The first row in d indicates the internal differences among the GOA Holocene and LGM samples, whereas the other rows indicate external differences between the GOA samples and terrigenous endmembers.

Extended Data Fig. 5 Geochemical data inversion at the intermediate-depth site.

a, Weight fractions of the volcanic endmembers and the terrigenous fractions. b, Total volcanic fraction versus total sediment MAR4. Lines and shaded intervals (95% CI) indicate linear regression (P > 0.5). c, Box plots of weighted residuals of the elements in the solution of the geochemical inverse problem. Boxes indicate the interquartile range; thick lines indicate the medians; whiskers extend to 1.5 times the interquartile range away from the boxes

Source data

Extended Data Fig. 6 Records of volcanism since the LGM compiled by this study compared with that of ref. 5.

a, Eruption frequencies of volcanoes binned at 2-kyr intervals. For glaciated volcanoes, the total frequency, as well as the frequency of regional glaciated volcanoes from the Northeast Pacific margin and the rest of the world, are shown. b, The ratios of the eruption frequency of the glaciated volcanoes (global total, from the Northeast Pacific margin or elsewhere) to that of the global unglaciated volcanoes, normalized to the mean ratios during the LGM, used as proxies for glacially induced volcanism. The ribbons indicate interquartile ranges. The eruption frequency ratio increases between 12 and 6 ka in Huybers and Langmuir5, much later than our new compilation (17–11 ka). However, this is because the eruptions of unglaciated volcanoes were under-sampled in Huybers and Langmuir5 during the deglaciation because their database was smaller (a). With greater data coverage, this issue of under-sampling seems resolved in our new compilation

Source data

Extended Data Fig. 7 Northeast Pacific productivity proxies.

a, CaCO3 content19,28. b, Sediment Sr/Al ratio. c, Counts of coccolith per field of view19. d, TOC content28. e, Opal content28. f, Bulk sediment δ15N, corrected for terrestrial organic matter input28. g, Sediment Ba/Al ratio. The y-axis scales are different between the intermediate-depth and abyssal sites. h, Abundances of productivity-related benthic foraminifera species Islandiella norcrossi from the intermediate-depth site and Elphidium batialis from the abyssal site12,23. The colour legends in ah are the same

Source data

Extended Data Fig. 8 Records of Northeast Pacific deoxygenation compared with other regional and global climate proxies.

a, Re/Al ratios from the GOA sites. b, Benthic–planktonic radiocarbon age difference (with 1σ uncertainty) at the intermediate-depth site4,17, a proxy for intermediate water ventilation. c, δ18O (with 1σ uncertainty) of surface seawater in the Northeast Pacific after removing global ice volume effect29, a proxy for surface salinity. d, Relative sea level in the northern GOA31 (points with smoothed lines and 95% CI). e, 231Pa/230Th (with 1σ uncertainty) from the North Atlantic32, a proxy for the overturning strength of the AMOC. e, Terrestrial 4He flux (with 1σ uncertainty) from the subpolar North Pacific33, a proxy for mineral dust flux that is not affected by volcanic ash input.

Extended Data Fig. 9 Histories of the CIS.

a, Radiocarbon-based ice sheet extent reconstruction from 20 ka to 12 ka (ref. 41). b, Changes of ice thickness in the ICE-7G model from 20 ka to 12 ka (ref. 25). Red colour indicates ice loss, whereas blue colour indicates ice accumulation.

Extended Data Fig. 10 Sensitivity of the CIS volume to the surface temperature forcing in the PISM model27.

a, Temperature forcing used in the sensitivity experiments (relative to the modern mean) derived from the following temperature records: EPICA117, GRIP115, NGRIP116, VOSTOK118, ODP 1012 and 1020 (ref. 119). b, Modelled CIS volume in terms of sea-level equivalent. In the EPICA and GRIP experiments, both 5-km and 10-km spatial resolutions were used, whereas in other experiments, only 10-km resolution was used27. c, Rate of CIS volume change (500-year binned averages). d, Lead–lag between the ice volume response and the temperature forcing. Estimated time-lags are indicated by the vertical lines according to the highest negative cross-correlation and the results are shown in the legends inside brackets. e, Sensitivity of the CIS volume to the temperature forcing. Linear regression (lines, r2 between 0.82 and 0.94, P 0.05) were performed after shifting the temperature forcing by the time-lags estimated in c. Estimated sensitivities in metres of sea-level equivalent per 1 °C are shown in the legends inside brackets. f, Predicted rates of CIS volume change (median values) if the GOA SST record is used as the temperature forcing. The results were estimated using the ice volume–temperature relationship in each sensitivity experiment. The final estimate in Fig. 3h incorporates all the sensitivity experiments and uncertainties

Source data

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, J., Mix, A.C., Haley, B.A. et al. Volcanic trigger of ocean deoxygenation during Cordilleran ice sheet retreat. Nature 611, 74–80 (2022). https://doi.org/10.1038/s41586-022-05267-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-05267-y

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing